
    g                         d Z ddlmZmZmZ ddlmZ ddlmZm	Z	m
Z
 ddlmZmZmZ  G d ded	
          Z G d de	          ZdS )z
Processor class for Blip.
    )ListOptionalUnion   )
ImageInput)ProcessingKwargsProcessorMixinUnpack)BatchEncodingPreTokenizedInput	TextInputc            
       ,    e Zd Zdddddddddd	i dZdS )BlipProcessorKwargsTFr   )	add_special_tokenspaddingstridereturn_overflowing_tokensreturn_special_tokens_maskreturn_offsets_mappingreturn_token_type_idsreturn_lengthverbose)text_kwargsimages_kwargsN)__name__
__module____qualname__	_defaults     d/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/blip/processing_blip.pyr   r      sF         #').*/&+%*"

 

  IIIr    r   F)totalc            
            e Zd ZdZddgZg ZdZdZ fdZ	 	 	 	 dde	d	e
eeee         eef                  d
ee         defdZd Zd Zed             Z xZS )BlipProcessora]  
    Constructs a BLIP processor which wraps a BERT tokenizer and BLIP image processor into a single processor.

    [`BlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`BertTokenizerFast`]. See the
    docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.

    Args:
        image_processor (`BlipImageProcessor`):
            An instance of [`BlipImageProcessor`]. The image processor is a required input.
        tokenizer (`BertTokenizerFast`):
            An instance of ['BertTokenizerFast`]. The tokenizer is a required input.
    image_processor	tokenizerBlipImageProcessor)BertTokenizerBertTokenizerFastc                 r    d|_         t                                          ||           | j        | _        d S )NF)r   super__init__r%   current_processor)selfr%   r&   kwargs	__class__s       r!   r,   zBlipProcessor.__init__>   s6    */	')444!%!5r    Nimagestextr/   returnc                     ||t          d          d} | j        t          fd| j        j        i|}| | j        |fi |d         }|- | j        |fi |d         }||                    |           |S |S )ae  
        This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
        [`BertTokenizerFast.__call__`] to prepare text for the model.

        Please refer to the docstring of the above two methods for more information.
        Args:
            images (`ImageInput`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Nz*You have to specify either images or text.tokenizer_init_kwargsr   r   )
ValueError_merge_kwargsr   r&   init_kwargsr%   update)	r.   r1   r2   audiovideosr/   text_encodingoutput_kwargsencoding_image_processors	            r!   __call__zBlipProcessor.__call__C   s    8 >dlIJJJ +*
 
"&."<
 
 

 *DN4PP=3OPPM';t';F'e'emTcFd'e'e$((//>>>++r    c                 &     | j         j        |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r&   batch_decoder.   argsr/   s      r!   rA   zBlipProcessor.batch_decodev   s    
 +t~*D;F;;;r    c                 &     | j         j        |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r&   decoderB   s      r!   rE   zBlipProcessor.decode}   s    
 %t~$d5f555r    c                     | j         j        }| j        j        }t          t                              ||z                       S )N)r&   model_input_namesr%   listdictfromkeys)r.   tokenizer_input_namesimage_processor_input_namess      r!   rG   zBlipProcessor.model_input_names   s:     $ @&*&:&L#DMM"7:U"UVVWWWr    )NNNN)r   r   r   __doc__
attributesvalid_kwargsimage_processor_classtokenizer_classr,   r   r   r   strr   r   r   r
   r   r   r?   rA   rE   propertyrG   __classcell__)r0   s   @r!   r$   r$   +   s
         $[1JL0<O6 6 6 6 6 "NR1 11 uS$s)Y8IIJK1 ,-1 
1 1 1 1f< < <6 6 6 X X XX X X X Xr    r$   N)rM   typingr   r   r   image_utilsr   processing_utilsr   r	   r
   tokenization_utils_baser   r   r   r   r$   r   r    r!   <module>rY      s     ) ( ( ( ( ( ( ( ( ( % % % % % % H H H H H H H H H H R R R R R R R R R R    *%    "]X ]X ]X ]X ]XN ]X ]X ]X ]X ]Xr    