
    g}                     p    d Z ddlmZ ddlmZ ddlmZmZ  ej        e	          Z
 G d dee          ZdS )zBiT model configuration   )PretrainedConfig)logging)BackboneConfigMixin*get_aligned_output_features_output_indicesc                   \     e Zd ZdZdZddgZddgZddg d	g d
ddddddddddf fd	Z xZS )	BitConfiga  
    This is the configuration class to store the configuration of a [`BitModel`]. It is used to instantiate an BiT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the BiT
    [google/bit-50](https://huggingface.co/google/bit-50) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        embedding_size (`int`, *optional*, defaults to 64):
            Dimensionality (hidden size) for the embedding layer.
        hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
            Dimensionality (hidden size) at each stage.
        depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
            Depth (number of layers) for each stage.
        layer_type (`str`, *optional*, defaults to `"preactivation"`):
            The layer to use, it can be either `"preactivation"` or `"bottleneck"`.
        hidden_act (`str`, *optional*, defaults to `"relu"`):
            The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
            are supported.
        global_padding (`str`, *optional*):
            Padding strategy to use for the convolutional layers. Can be either `"valid"`, `"same"`, or `None`.
        num_groups (`int`, *optional*, defaults to 32):
            Number of groups used for the `BitGroupNormActivation` layers.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            The drop path rate for the stochastic depth.
        embedding_dynamic_padding (`bool`, *optional*, defaults to `False`):
            Whether or not to make use of dynamic padding for the embedding layer.
        output_stride (`int`, *optional*, defaults to 32):
            The output stride of the model.
        width_factor (`int`, *optional*, defaults to 1):
            The width factor for the model.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.

    Example:
    ```python
    >>> from transformers import BitConfig, BitModel

    >>> # Initializing a BiT bit-50 style configuration
    >>> configuration = BitConfig()

    >>> # Initializing a model (with random weights) from the bit-50 style configuration
    >>> model = BitModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    bitpreactivation
bottleneckSAMEVALIDr   @   )   i   i   i   )r         r   reluN    g        F   c                     t                      j        d
i | || j        vr-t          d| dd                    | j                             |C|                                | j        v r|                                }nt          d| d          || _        || _        || _	        || _
        || _        || _        || _        || _        |	| _        |
| _        || _        || _        dgd t'          dt)          |          dz             D             z   | _        t-          ||| j        	          \  | _        | _        d S )Nzlayer_type=z is not one of ,zPadding strategy z not supportedstemc                     g | ]}d | S )stage ).0idxs     e/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/bit/configuration_bit.py
<listcomp>z&BitConfig.__init__.<locals>.<listcomp>   s    &Z&Z&Z}s}}&Z&Z&Z    r   )out_featuresout_indicesstage_namesr   )super__init__layer_types
ValueErrorjoinuppersupported_paddingnum_channelsembedding_sizehidden_sizesdepths
layer_type
hidden_actglobal_padding
num_groupsdrop_path_rateembedding_dynamic_paddingoutput_stridewidth_factorrangelenr"   r   _out_features_out_indices)selfr*   r+   r,   r-   r.   r/   r0   r1   r2   r3   r4   r5   r    r!   kwargs	__class__s                   r   r$   zBitConfig.__init__[   si   $ 	""6"""T---b:bbchhtO_F`F`bbccc%##%%)???!/!5!5!7!7 !S^!S!S!STTT(,($$,$,)B&*("8&Z&ZaVWX@Y@Y&Z&Z&ZZ0Z%;DL\1
 1
 1
-D---r   )	__name__
__module____qualname____doc__
model_typer%   r)   r$   __classcell__)r<   s   @r   r   r      s        ; ;z J"L1K) +++||""'*
 *
 *
 *
 *
 *
 *
 *
 *
 *
r   r   N)r@   configuration_utilsr   utilsr   utils.backbone_utilsr   r   
get_loggerr=   loggerr   r   r   r   <module>rH      s      3 3 3 3 3 3       c c c c c c c c 
	H	%	%l
 l
 l
 l
 l
#%5 l
 l
 l
 l
 l
r   