
    g"                     ^    d Z ddlmZ ddlmZ  ej        e          Z G d de          ZdS )zBioGPT model configuration   )PretrainedConfig)loggingc                   L     e Zd ZdZdZ	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 d fd	Z xZS )BioGptConfiga  
    This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an
    BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the BioGPT
    [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 42384):
            Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`BioGptModel`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 4096):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        scale_embedding (`bool`, *optional*, defaults to `True`):
            Scale embeddings by diving by sqrt(d_model).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        layerdrop (`float`, *optional*, defaults to 0.0):
            Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        pad_token_id (`int`, *optional*, defaults to 1):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 0):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 2):
            End of stream token id.

    Example:

    ```python
    >>> from transformers import BioGptModel, BioGptConfig

    >>> # Initializing a BioGPT microsoft/biogpt style configuration
    >>> configuration = BioGptConfig()

    >>> # Initializing a model from the microsoft/biogpt style configuration
    >>> model = BioGptModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```biogpt鐥              gelu皙?{Gz?-q=T                  c                    || _         |	| _        || _        || _        || _        || _        || _        || _        || _        |
| _	        || _
        || _        || _        || _        || _         t                      j        d|||d| d S )N)pad_token_idbos_token_ideos_token_id )
vocab_sizemax_position_embeddingshidden_sizenum_hidden_layersnum_attention_headsintermediate_size
hidden_acthidden_dropout_probattention_probs_dropout_probinitializer_rangelayer_norm_epsscale_embedding	use_cache	layerdropactivation_dropoutsuper__init__)selfr   r   r   r   r   r    r!   r"   r   r#   r$   r%   r&   r'   r(   r   r   r   kwargs	__class__s                       k/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/biogpt/configuration_biogpt.pyr*   zBioGptConfig.__init__^   s    , %'>$&!2#6 !2$#6 ,H)!2,."""4sl\hsslrsssss    )r   r	   r
   r   r   r   r   r   r	   r   r   TTr   r   r   r   r   )__name__
__module____qualname____doc__
model_typer*   __classcell__)r-   s   @r.   r   r      s        A AF J %( $'%t %t %t %t %t %t %t %t %t %tr/   r   N)	r3   configuration_utilsr   utilsr   
get_loggerr0   loggerr   r   r/   r.   <module>r:      s    !   3 3 3 3 3 3       
	H	%	%kt kt kt kt kt# kt kt kt kt ktr/   