
    g#2                        d Z ddlZddlmZmZmZ ddlmZ ddlm	Z	m
Z
 ddlmZ  e
j        e          Zd	Z G d
 de          Z e	e                    dd          d           G d de                      Z e	e                    dd          d           G d de                      Z e	e                    dd          d           G d de                      Z G d de          ZdS )zBARK model configuration    N)DictOptionalUnion   )PretrainedConfig)add_start_docstringslogging   )CONFIG_MAPPINGa
  
    This is the configuration class to store the configuration of a [`{model}`]. It is used to instantiate the model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Bark [suno/bark](https://huggingface.co/suno/bark)
    architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        block_size (`int`, *optional*, defaults to 1024):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        input_vocab_size (`int`, *optional*, defaults to 10_048):
            Vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`{model}`]. Defaults to 10_048 but should be carefully thought with
            regards to the chosen sub-model.
        output_vocab_size (`int`, *optional*, defaults to 10_048):
            Output vocabulary size of a Bark sub-model. Defines the number of different tokens that can be represented
            by the: `output_ids` when passing forward a [`{model}`]. Defaults to 10_048 but should be carefully thought
            with regards to the chosen sub-model.
        num_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the given sub-model.
        num_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer architecture.
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the architecture.
        dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use bias in the linear layers and layer norm layers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
c                        e Zd ZdZdgZdddddZ	 	 	 	 	 	 	 	 	 	 d fd	Ze	 	 	 	 	 ddee	e
j        f         deee	e
j        f                  dededeee	ef                  de	ddfd            Z xZS )BarkSubModelConfigbark_modulepast_key_values	num_heads
num_layersinput_vocab_size
block_size)num_attention_headsnum_hidden_layers
vocab_sizewindow_size   @'                T{Gz?c                     || _         || _        || _        || _        || _        || _        || _        || _        |
| _        |	| _	         t                      j        di | d S )N )r   r   output_vocab_sizer   r   hidden_sizedropoutbias	use_cacheinitializer_rangesuper__init__)selfr   r   r    r   r   r!   r"   r#   r%   r$   kwargs	__class__s               g/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/bark/configuration_bark.pyr'   zBarkSubModelConfig.__init__M   sr     % 0!2$"&	"!2""6"""""    NFmainpretrained_model_name_or_path	cache_dirforce_downloadlocal_files_onlytokenrevisionreturnr   c                    ||d<   ||d<   ||d<   ||d<   |                      ||            | j        |fi |\  }}|                    d          dk    r|| j         d         }d|v rMt	          | d          r=|d         | j        k    r,t
                              d|d          d	| j         d
            | j        |fi |S )Nr/   r0   r1   r3   
model_typebark_configzYou are using a model of type z  to instantiate a model of type zN. This is not supported for all configurations of models and can yield errors.)_set_token_in_kwargsget_config_dictgetr6   hasattrloggerwarning	from_dict)	clsr.   r/   r0   r1   r2   r3   r)   config_dicts	            r+   from_pretrainedz"BarkSubModelConfig.from_pretrainedh   s#    ({#1 %5!"%z  ///1c12OZZSYZZV ??<((F22%&@&@&@AK;&&73+E+E&+VbJcgjguJuJuNNr\1J r r>r r r  
 s}[33F333r,   )
r   r   r   r   r   r   r   Tr   T)NFFNr-   )__name__
__module____qualname__r6   keys_to_ignore_at_inferenceattribute_mapr'   classmethodr   strosPathLiker   boolrB   __classcell__r*   s   @r+   r   r   B   s*       J#4"5  +)(#	 M  # # # # # #6  8<$!&,04 4',S"+-='>4 E#r{"2344 	4
 4 c4i()4 4 
4 4 4 [4 4 4 4 4r,   r   BarkSemanticConfigBarkSemanticModel)configmodela  
    Example:

    ```python
    >>> from transformers import BarkSemanticConfig, BarkSemanticModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkSemanticConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkSemanticModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                       e Zd ZdZdS )rO   semanticNrC   rD   rE   r6   r   r,   r+   rO   rO      s        & JJJr,   BarkCoarseConfigBarkCoarseModela  
    Example:

    ```python
    >>> from transformers import BarkCoarseConfig, BarkCoarseModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkCoarseConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkCoarseModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                       e Zd ZdZdS )rV   coarse_acousticsNrU   r   r,   r+   rV   rV      s        & $JJJr,   BarkFineConfigBarkFineModela   
        n_codes_total (`int`, *optional*, defaults to 8):
            The total number of audio codebooks predicted. Used in the fine acoustics sub-model.
        n_codes_given (`int`, *optional*, defaults to 1):
            The number of audio codebooks predicted in the coarse acoustics sub-model. Used in the acoustics
            sub-models.
    Example:

    ```python
    >>> from transformers import BarkFineConfig, BarkFineModel

    >>> # Initializing a Bark sub-module style configuration
    >>> configuration = BarkFineConfig()

    >>> # Initializing a model (with random weights) from the suno/bark style configuration
    >>> model = BarkFineModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```c                   $     e Zd ZdZd fd	Z xZS )rZ   fine_acousticsT      c                 Z    || _         || _         t                      j        dd|i| d S )Ntie_word_embeddingsr   )n_codes_totaln_codes_givenr&   r'   )r(   ra   rb   rc   r)   r*   s        r+   r'   zBarkFineConfig.__init__   s<    **KK-@KFKKKKKr,   )Tr^   r_   )rC   rD   rE   r6   r'   rM   rN   s   @r+   rZ   rZ      sN        0 "JL L L L L L L L L Lr,   c            	       l     e Zd ZdZdZ	 	 	 	 	 ddedededef fd	Zedede	de
defd
            Z xZS )
BarkConfiga  
    This is the configuration class to store the configuration of a [`BarkModel`]. It is used to instantiate a Bark
    model according to the specified sub-models configurations, defining the model architecture.

    Instantiating a configuration with the defaults will yield a similar configuration to that of the Bark
    [suno/bark](https://huggingface.co/suno/bark) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
    semantic_config ([`BarkSemanticConfig`], *optional*):
        Configuration of the underlying semantic sub-model.
    coarse_acoustics_config ([`BarkCoarseConfig`], *optional*):
        Configuration of the underlying coarse acoustics sub-model.
    fine_acoustics_config ([`BarkFineConfig`], *optional*):
        Configuration of the underlying fine acoustics sub-model.
    codec_config ([`AutoConfig`], *optional*):
        Configuration of the underlying codec sub-model.

    Example:

    ```python
    >>> from transformers import (
    ...     BarkSemanticConfig,
    ...     BarkCoarseConfig,
    ...     BarkFineConfig,
    ...     BarkModel,
    ...     BarkConfig,
    ...     AutoConfig,
    ... )

    >>> # Initializing Bark sub-modules configurations.
    >>> semantic_config = BarkSemanticConfig()
    >>> coarse_acoustics_config = BarkCoarseConfig()
    >>> fine_acoustics_config = BarkFineConfig()
    >>> codec_config = AutoConfig.from_pretrained("facebook/encodec_24khz")


    >>> # Initializing a Bark module style configuration
    >>> configuration = BarkConfig.from_sub_model_configs(
    ...     semantic_config, coarse_acoustics_config, fine_acoustics_config, codec_config
    ... )

    >>> # Initializing a model (with random weights)
    >>> model = BarkModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```
    r7   Nr   semantic_configcoarse_acoustics_configfine_acoustics_configcodec_configc                    |i }t                               d           |i }t                               d           |i }t                               d           |i }t                               d           t          di || _        t	          di || _        t          di || _        d|v r|d         nd}t          |         di || _	        || _
         t                      j        di | d S )NzMsemantic_config is None. initializing the semantic model with default values.zScoarse_acoustics_config is None. initializing the coarse model with default values.zOfine_acoustics_config is None. initializing the fine model with default values.zGcodec_config is None. initializing the codec model with default values.r6   encodecr   )r=   inforO   rf   rV   rg   rZ   rh   r   ri   r%   r&   r'   )	r(   rf   rg   rh   ri   r%   r)   codec_model_typer*   s	           r+   r'   zBarkConfig.__init__  s%    " OKKghhh"*&(#KKmnnn ($&!KKijjjLKKabbb1DDODD'7'R'R:Q'R'R$%3%L%L6K%L%L"9E9U9U<55[d*+;<LL|LL!2""6"""""r,   c                      | d|                                 |                                 |                                 |                                 d|S )z
        Instantiate a [`BarkConfig`] (or a derived class) from bark sub-models configuration.

        Returns:
            [`BarkConfig`]: An instance of a configuration object
        )rf   rg   rh   ri   r   )to_dict)r@   rf   rg   rh   ri   r)   s         r+   from_sub_model_configsz!BarkConfig.from_sub_model_configs0  sh     s 
+3355$;$C$C$E$E"7"?"?"A"A%--//	
 

 
 
 	
r,   )NNNNr   )rC   rD   rE   __doc__r6   r   r'   rH   rO   rV   rZ   r   rp   rM   rN   s   @r+   re   re      s        2 2h J !%(,&*!!# !#!# "&!#  $	!#
 !# !# !# !# !# !#F 
+
 "2
  .	

 '
 
 
 [
 
 
 
 
r,   re   )rq   rJ   typingr   r   r   configuration_utilsr   utilsr   r	   autor   
get_loggerrC   r=   #BARK_SUBMODELCONFIG_START_DOCSTRINGr   formatrO   rV   rZ   re   r   r,   r+   <module>ry      s3     				 ( ( ( ( ( ( ( ( ( ( 3 3 3 3 3 3 2 2 2 2 2 2 2 2 ! ! ! ! ! ! 
	H	%	%#' #LD4 D4 D4 D4 D4) D4 D4 D4N '..6JRe.ff $    +  % $ '..6HPa.bb $$ $ $ $ $) $ $% $$ '..6Fo.^^ .L L L L L' L L/ .Lo
 o
 o
 o
 o
! o
 o
 o
 o
 o
r,   