
    g                         d Z ddlmZmZ ddlmZ ddlmZmZm	Z	 ddl
mZmZmZ ddlmZ  G d d	ed
          Z G d de          ZdgZdS )z(
Image/Text processor class for AltCLIP
    )ListUnion   )
ImageInput)ProcessingKwargsProcessorMixinUnpack)BatchEncodingPreTokenizedInput	TextInput)deprecate_kwargc                       e Zd Zi ZdS )AltClipProcessorKwargsN)__name__
__module____qualname__	_defaults     j/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/altclip/processing_altclip.pyr   r      s        IIIr   r   F)totalc            
            e Zd ZdZddgZdZdZ eddd          d fd
	            Z	 	 	 	 dde	de
eeee         ee         f         dee         defdZd Zd Zed             Z xZS )AltCLIPProcessoraD  
    Constructs a AltCLIP processor which wraps a CLIP image processor and a XLM-Roberta tokenizer into a single
    processor.

    [`AltCLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`XLMRobertaTokenizerFast`]. See
    the [`~AltCLIPProcessor.__call__`] and [`~AltCLIPProcessor.decode`] for more information.

    Args:
        image_processor ([`CLIPImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`XLMRobertaTokenizerFast`], *optional*):
            The tokenizer is a required input.
    image_processor	tokenizerCLIPImageProcessor)XLMRobertaTokenizerXLMRobertaTokenizerFastfeature_extractorz5.0.0)old_nameversionnew_nameNc                     |t          d          |t          d          t                                          ||           d S )Nz)You need to specify an `image_processor`.z"You need to specify a `tokenizer`.)
ValueErrorsuper__init__)selfr   r   	__class__s      r   r&   zAltCLIPProcessor.__init__2   sM    "HIIIABBB)44444r   imagestextkwargsreturnc                    ||t          d          ||t          d           | j        t          fd| j        j        i|}| | j        |fi |d         }| | j        |fi |d         }d|d         v r|d                             dd          }	|||j        |d<   |S ||S t          t          d
i ||		          S )a  
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to XLMRobertaTokenizerFast's [`~XLMRobertaTokenizerFast.__call__`] if `text` is not
        `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
        CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
        of the above two methods for more information.

        Args:

            images (`ImageInput`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz'You must specify either text or images.tokenizer_init_kwargstext_kwargsimages_kwargsreturn_tensorscommon_kwargspixel_values)datatensor_typer   )
r$   _merge_kwargsr   r   init_kwargsr   popr3   r
   dict)
r'   r)   r*   audiovideosr+   output_kwargsencodingimage_featuresr1   s
             r   __call__zAltCLIPProcessor.__call__;   s*   P <FNFGGG<FNFGGG**"
 
"&."<
 
 
 %t~dKKmM.JKKH1T1&[[M/<Z[[N }_===*?;??@PRVWWN 2'5'BH^$OO d&<&<^&<&<.YYYYr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
        Please refer to the docstring of this method for more information.
        )r   batch_decoder'   argsr+   s      r   rA   zAltCLIPProcessor.batch_decode   s    
 +t~*D;F;;;r   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to XLMRobertaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
        refer to the docstring of this method for more information.
        )r   decoderB   s      r   rE   zAltCLIPProcessor.decode   s    
 %t~$d5f555r   c                     | j         j        }| j        j        }t          t                              ||z                       S )N)r   model_input_namesr   listr9   fromkeys)r'   tokenizer_input_namesimage_processor_input_namess      r   rG   z"AltCLIPProcessor.model_input_names   s:     $ @&*&:&L#DMM"7:U"UVVWWWr   )NN)NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classr   r&   r   r   r   r   r   r	   r   r
   r?   rA   rE   propertyrG   __classcell__)r(   s   @r   r   r      s<         $[1J0HO_17M^___5 5 5 5 5 `_5 "^bBZ BZBZ I0$y/4HYCZZ[BZ /0BZ 
BZ BZ BZ BZH< < <6 6 6 X X XX X X X Xr   r   N)rL   typingr   r   image_utilsr   processing_utilsr   r   r	   tokenization_utils_baser
   r   r   utils.deprecationr   r   r   __all__r   r   r   <module>rX      s            % % % % % % H H H H H H H H H H R R R R R R R R R R 0 0 0 0 0 0    -U    rX rX rX rX rX~ rX rX rXj 
r   