
    g                         d Z ddlmZmZ ddlmZ ddlmZmZm	Z	m
Z
 ddlmZmZmZ  G d ded	
          Z G d de          ZdgZdS )z&
Image/Text processor class for ALIGN
    )ListUnion   )
ImageInput)ProcessingKwargsProcessorMixinUnpack!_validate_images_text_input_order)BatchEncodingPreTokenizedInput	TextInputc                       e Zd ZddddiZdS )AlignProcessorKwargstext_kwargs
max_length@   )paddingr   N)__name__
__module____qualname__	_defaults     f/var/www/html/ai-engine/env/lib/python3.11/site-packages/transformers/models/align/processing_align.pyr   r      s*         	#
 
IIIr   r   F)totalc            
            e Zd ZdZddgZdZdZ fdZ	 	 	 	 dded	e	e
eee
         ee         f         d
ee         defdZd Zd Zed             Z xZS )AlignProcessoray  
    Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and
    [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and
    tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more
    information.
    The preferred way of passing kwargs is as a dictionary per modality, see usage example below.
        ```python
        from transformers import AlignProcessor
        from PIL import Image
        model_id = "kakaobrain/align-base"
        processor = AlignProcessor.from_pretrained(model_id)

        processor(
            images=your_pil_image,
            text=["What is that?"],
            images_kwargs = {"crop_size": {"height": 224, "width": 224}},
            text_kwargs = {"padding": "do_not_pad"},
            common_kwargs = {"return_tensors": "pt"},
        )
        ```

    Args:
        image_processor ([`EfficientNetImageProcessor`]):
            The image processor is a required input.
        tokenizer ([`BertTokenizer`, `BertTokenizerFast`]):
            The tokenizer is a required input.

    image_processor	tokenizerEfficientNetImageProcessor)BertTokenizerBertTokenizerFastc                 L    t                                          ||           d S N)super__init__)selfr   r   	__class__s      r   r&   zAlignProcessor.__init__F   s#    )44444r   Nimagestextkwargsreturnc                    ||t          d          t          ||          \  }} | j        t          fd| j        j        i|}| | j        |fi |d         }| | j        |fi |d         }d|d         v r|d                             dd          }	|||j        |d<   |S ||S t          t          d
i ||		          S )a  
        Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text`
        arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
        the text. To prepare the image(s), this method forwards the `images` arguments to
        EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer
        to the doctsring of the above two methods for more information.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `List[str]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                    - `'tf'`: Return TensorFlow `tf.constant` objects.
                    - `'pt'`: Return PyTorch `torch.Tensor` objects.
                    - `'np'`: Return NumPy `np.ndarray` objects.
                    - `'jax'`: Return JAX `jnp.ndarray` objects.
        Returns:
            [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        Nz'You must specify either text or images.tokenizer_init_kwargsr   images_kwargsreturn_tensorscommon_kwargspixel_values)datatensor_typer   )
ValueErrorr
   _merge_kwargsr   r   init_kwargsr   popr2   r   dict)
r'   r)   r*   audiovideosr+   output_kwargsencodingimage_featuresr0   s
             r   __call__zAlignProcessor.__call__I   s%   L <FNFGGG8FF** 
 
"&."<
 
 
 %t~dKKmM.JKKH1T1&[[M/<Z[[N }_===*?;??@PRVWWN 2'5'BH^$OO d&<&<^&<&<.YYYYr   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        )r   batch_decoder'   argsr+   s      r   rA   zAlignProcessor.batch_decode   s    
 +t~*D;F;;;r   c                 &     | j         j        |i |S )z
        This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        )r   decoderB   s      r   rE   zAlignProcessor.decode   s    
 %t~$d5f555r   c                     | j         j        }| j        j        }t          t                              ||z                       S r$   )r   model_input_namesr   listr9   fromkeys)r'   tokenizer_input_namesimage_processor_input_namess      r   rG   z AlignProcessor.model_input_names   s:     $ @&*&:&L#DMM"7:U"UVVWWWr   )NNNN)r   r   r   __doc__
attributesimage_processor_classtokenizer_classr&   r   r   r   r   r   r	   r   r   r?   rA   rE   propertyrG   __classcell__)r(   s   @r   r   r   $   s        : $[1J8<O5 5 5 5 5
 "^bAZ AZAZ I0$y/4HYCZZ[AZ -.AZ 
AZ AZ AZ AZF< < <6 6 6 X X XX X X X Xr   r   N)rL   typingr   r   image_utilsr   processing_utilsr   r   r	   r
   tokenization_utils_baser   r   r   r   r   __all__r   r   r   <module>rW      s             % % % % % % k k k k k k k k k k k k R R R R R R R R R R    +5    zX zX zX zX zX^ zX zX zXz 
r   