
    ڧg                        d dl mZ d dlmZ d dlmZmZmZ d dlm	Z	m
Z
 d dlmZ ddlmZ ddlmZ d	d
lmZmZmZ d	dlmZ d	dlmZmZmZ d	dlmZmZmZ g dZ  G d de	j!                  Z" G d de	j!                  Z#dede$de"fdZ% G d de          Z& e             ede&j'        fdej(        f          dddej(        ddee&         d e)dee$         d!ee         d"ede"fd#                        Z*dS )$    )OrderedDict)partial)AnyDictOptional)nnTensor)
functional   )SemanticSegmentation)_log_api_usage_once   )register_modelWeightsWeightsEnum)_VOC_CATEGORIES)_ovewrite_value_paramhandle_legacy_interfaceIntermediateLayerGetter)mobilenet_v3_largeMobileNet_V3_Large_WeightsMobileNetV3)LRASPP!LRASPP_MobileNet_V3_Large_Weightslraspp_mobilenet_v3_largec                   j     e Zd ZdZ	 ddej        dededededd	f fd
Zdede	e
ef         fdZ xZS )r   a  
    Implements a Lite R-ASPP Network for semantic segmentation from
    `"Searching for MobileNetV3"
    <https://arxiv.org/abs/1905.02244>`_.

    Args:
        backbone (nn.Module): the network used to compute the features for the model.
            The backbone should return an OrderedDict[Tensor], with the key being
            "high" for the high level feature map and "low" for the low level feature map.
        low_channels (int): the number of channels of the low level features.
        high_channels (int): the number of channels of the high level features.
        num_classes (int, optional): number of output classes of the model (including the background).
        inter_channels (int, optional): the number of channels for intermediate computations.
       backbonelow_channelshigh_channelsnum_classesinter_channelsreturnNc                     t                                                       t          |            || _        t	          ||||          | _        d S )N)super__init__r   r   
LRASPPHead
classifier)selfr   r   r    r!   r"   	__class__s         b/var/www/html/ai-engine/env/lib/python3.11/site-packages/torchvision/models/segmentation/lraspp.pyr&   zLRASPP.__init__#   sI     	D!!! $\=+~^^    inputc                     |                      |          }|                     |          }t          j        ||j        dd          dd          }t                      }||d<   |S )NbilinearFsizemodealign_cornersout)r   r(   Finterpolateshaper   )r)   r-   featuresr5   results        r+   forwardzLRASPP.forward+   s_    ==''ooh''mCek"##&6ZW\]]]ur,   )r   )__name__
__module____qualname____doc__r   Moduleintr&   r	   r   strr;   __classcell__r*   s   @r+   r   r      s           sv_ _	_14_EH_WZ_lo_	_ _ _ _ _ _V S&[(9        r,   r   c            
       T     e Zd Zdededededdf
 fdZdeeef         defd	Z xZ	S )
r'   r   r    r!   r"   r#   Nc           	         t                                                       t          j        t          j        ||dd          t          j        |          t          j        d                    | _        t          j        t          j        d          t          j        ||dd          t          j	                              | _
        t          j        ||d          | _        t          j        ||d          | _        d S )N   F)biasT)inplace)r%   r&   r   
SequentialConv2dBatchNorm2dReLUcbrAdaptiveAvgPool2dSigmoidscalelow_classifierhigh_classifier)r)   r   r    r!   r"   r*   s        r+   r&   zLRASPPHead.__init__7   s    =Im^QUCCCN>**GD!!!
 

 ] ##Im^QUCCCJLL
 


 !ik1EE!yaHHr,   r-   c                     |d         }|d         }|                      |          }|                     |          }||z  }t          j        ||j        dd          dd          }|                     |          |                     |          z   S )Nlowhighr/   r0   Fr1   )rN   rQ   r6   r7   r8   rR   rS   )r)   r-   rU   rV   xss         r+   r;   zLRASPPHead.forwardF   s    ElV}HHTNNJJtEM!#)BCC.zQVWWW""3''$*>*>q*A*AAAr,   )
r<   r=   r>   rA   r&   r   rB   r	   r;   rC   rD   s   @r+   r'   r'   6   s        IS I I3 I`c Ihl I I I I I I	BT#v+. 	B6 	B 	B 	B 	B 	B 	B 	B 	Br,   r'   r   r!   r#   c                 H   | j         } dgd t          |           D             z   t          |           dz
  gz   }|d         }|d         }| |         j        }| |         j        }t	          | t          |          dt          |          di          } t          | |||          S )	Nr   c                 :    g | ]\  }}t          |d d          |S )_is_cnF)getattr).0ibs      r+   
<listcomp>z'_lraspp_mobilenetv3.<locals>.<listcomp>V   s.    \\\A8UZ@[@[\1\\\r,   rG   rU   rV   )return_layers)r9   	enumeratelenout_channelsr   rB   r   )r   r!   stage_indiceslow_poshigh_posr   r    s          r+   _lraspp_mobilenetv3rj   R   s     H C\\8)<)<\\\\`cdl`m`mpq`q_rrMBGR HG$1LX&3M&xGeUXYaUbUbdj?klllH(L-EEEr,   c                   `    e Zd Z ed eed          deddddd	d
idddd          ZeZdS )r   zJhttps://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pthi  )resize_sizei"(1 )rG   rG   z]https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_largezCOCO-val2017-VOC-labelsg33333L@gV@)miou	pixel_accg㥛  @g{G(@z
                These weights were trained on a subset of COCO, using only the 20 categories that are present in the
                Pascal VOC dataset.
            )
num_params
categoriesmin_sizerecipe_metrics_ops
_file_size_docs)url
transformsmetaN)	r<   r=   r>   r   r   r   r   COCO_WITH_VOC_LABELS_V1DEFAULT r,   r+   r   r   `   s}        %gX7/SAAA!)u) !%, , 
 
  , &GGGr,   r   
pretrainedpretrained_backbone)weightsweights_backboneNT)r   progressr!   r   r   r   r   kwargsc                    |                     dd          rt          d          t                              |           } t	          j        |          }| ,d}t          d|t          | j        d                             }n|d}t          |d	          }t          ||          }| *|
                    |                     |d
                     |S )a|  Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
    `Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.

    .. betastatus:: segmentation module

    Args:
        weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        num_classes (int, optional): number of output classes of the model (including the background).
        aux_loss (bool, optional): If True, it uses an auxiliary loss.
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
            weights for the backbone.
        **kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
        :members:
    aux_lossFz&This model does not use auxiliary lossNr!   rp      T)r   dilated)r   
check_hash)popNotImplementedErrorr   verifyr   r   re   ry   r   rj   load_state_dictget_state_dict)r   r   r!   r   r   r   models          r+   r   r   z   s    L zz*e$$ L!"JKKK/66w??G189IJJ+M;GLYeLfHgHghh		!*:DIIIH+66Eg44hSW4XXYYYLr,   )+collectionsr   	functoolsr   typingr   r   r   torchr   r	   torch.nnr
   r6   transforms._presetsr   utilsr   _apir   r   r   _metar   _utilsr   r   r   mobilenetv3r   r   r   __all__r@   r   r'   rA   rj   r   rz   IMAGENET1K_V1boolr   r|   r,   r+   <module>r      s   # # # # # #       & & & & & & & & & &         $ $ $ $ $ $ 7 7 7 7 7 7 ( ( ( ( ( ( 7 7 7 7 7 7 7 7 7 7 # # # # # # \ \ \ \ \ \ \ \ \ \ U U U U U U U U U U W
V
V         RY      FB B B B B B B B8F+ FC FF F F F F& & & & & & & &4 <TU+-G-UV   <@!%=W=e3 3 3783 3 #	3
 9:3 3 3 3 3	  
3 3 3r,   