
    ΧgKk                        d dl Z d dlmZ d dlmZmZmZmZmZm	Z	 d dl
Z
d dlmZmZ d dlmZmZmZmZmZmZmZmZmZ g dZ edd          Z G d	 d
e
j                  Z	 dde
j        dedefdZ G d de          Z G d de          ZdS )    N)
namedtuple)AnyCallableDictListOptionalTuple))sparse_semi_structured_from_dense_cutlass'sparse_semi_structured_to_dense_cutlass)	fallback_dispatchersemi_sparse_addmmsemi_sparse_detachsemi_sparse_indicessemi_sparse_linearsemi_sparse_mmsemi_sparse_tsemi_sparse_valuessemi_sparse_view)SparseSemiStructuredTensor!SparseSemiStructuredTensorCUTLASS$SparseSemiStructuredTensorCUSPARSELTto_sparse_semi_structured_SEMI_STRUCTURED_SPARSE_CONFIGz=sparse_min_rows sparse_min_cols dense_min_rows dense_min_colsc                      e Zd ZU dZdZeed<   eej	        e
f         ed<   dZeed<   dZeed<   dZeed	<   eed
<   eeef         ed<   eej                 ed<   eej                 ed<   eej                 ed<   eej                 ed<   eej                 ed<   eed<   eed<   g dZe	 	 	 d)dej        deej                 deej                 deej                 deej                 deej                 dededefd            ZdefdZdeee         eej        eeef         f         fdZedeej        eeef         dej        fd            Zej        j        Zede fd            Z!ed*d+d            Z"edej        ddfd             Z#ed!ej        dej        fd"            Z$d# Z%edej        dd fd$            Z&dd%d&ej        d'eej                 dej        fd(Z'dS ),r   a  
    This class implementes semi-structured sparsity as a Tensor subclass.

    Semi-structured sparsity describes a sparsity pattern where n in every 2n elements are sparse,
    depending on the datatype. It is also referred to as 2:4 sparsity or fine-grained
    structured sparsity.

    There are two backends available for semi_structred sparsity, either cuSPARSELt or CUTLASS.
    This class is meant to serve as a base class for both implementations. SparseSemiStructuredCUTLASS
    and SparseSemiStructuredCUSPARSELT both inherit from this class and define three backend-specific items.
    Note that as such, this class cannot be insantiated directly.

    -`_DTYPE_SHAPE_CONSTRAINTS` - A dictionary holding backend specific dense/sparse min shape constraints
    - `def from_dense()` - backend specific compression routines
    - `def _mm()` - backend specifc mm op (either torch._cslt_sparse_mm or torch._sparse_semi_structured_(mm|addmm))
    r   _DEFAULT_ALG_ID_DTYPE_SHAPE_CONSTRAINTST_FORCE_CUTLASSF_FUSE_TRANSPOSE_PROTOTYPE_WARNING_SHOWNBACKENDSPARSE_DISPATCHpackedmetapacked_tmeta_tcompressed_swizzled_bitmaskfuse_transpose_cusparseltalg_id_cusparselt)r"   r#   r$   r%   r&   shaperequires_gradc
                    | j         sTt          j        dt                     d| _         |                                  t
          j                            |            ||}
n||}
nt          d          |
j	        |
j
        |
j        |	d}t          j        j        | |fi |}||_        ||_        ||_        ||_        ||_        ||_        ||_        |S )a0  
        Create a new instance of the tensor subclass from the compressed sparse representation.

        We have the option to create the subclass with the compressed representations of both X and X', for training.
        For inference, we only need a single representation (either X or X'), while the corresponding other set will be None.

        Depending on the backend selected, certain fields will be set to None. (CUSPARSELT vs CUTLASS)

        Args:
            shape: The shape of the original dense tensor
            packed: The compressed representation of the original dense tensor
            meta: The metadata of the original dense tensor, if it is stored separately
            packed_t: The compressed representation of the transposed original dense tensor
            meta_t: The metadata of the transposed original dense tensor, if it is stored separately
            compressed_swizzled_bitmask: The masks used by the CUTLASS backend to determine which threads should
                                         participate in the computation. Used for pointwise ops.
            fuse_transpose_cusparselt: When running with cuSPARSELt, we have the option to fuse a transposition
                                       with a matmul, which is useful in the case of 2:4 sparse training.
            alg_id_cusparselt: The algorithm id to use when using cuSPARSELT, will have effect on performance

        Returns:
            torch.Tensor: A torch.Tensor wrapper subclass.

        Raises:
            ValueError: If all of the tensor arguments are None.
        zThe PyTorch API of SparseSemiStructuredTensor is in prototype stage and will change in the near future. Please open a Github issue for features requests and see our documentation on the torch.sparse module for further information about the project.TNz3At least one of packed or packed_t must be provided)devicedtypelayoutr*   )r   warningswarnUserWarning_load_dispatch_tabletorch_dynamoallow_in_graph
ValueErrorr,   r-   r.   Tensor_make_wrapper_subclassr"   r#   r$   r%   r&   r'   r(   )clsr)   r"   r#   r$   r%   r&   r'   r(   r*   previous_tensorkwargstensors                X/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/sparse/semi_structured.py__new__z"SparseSemiStructuredTensor.__new__J   s   N + 	.MH
    ,0C(
 $$&&& M((---$OO!&OORSSS &,$*%,*	
 
 4S%JJ6JJ"-H*+D(#4     returnc                 T    t          | d          sJ | j        j         d| j         dS )Nr)   z(shape=))hasattr	__class____name__r)   )selfs    r=   __repr__z#SparseSemiStructuredTensor.__repr__   s6    tW%%%%%.)??$*????r?   c                      t          t           fd j                            } j         j         j         j        f}||fS )Nc                 (    t          |           d uS N)getattr)xrF   s    r=   <lambda>z?SparseSemiStructuredTensor.__tensor_flatten__.<locals>.<lambda>   s    WT1--T9 r?   )listfilter	__slots__r)   r'   r(   r*   )rF   inner_tensorstensor_metas   `  r=   __tensor_flatten__z-SparseSemiStructuredTensor.__tensor_flatten__   sZ     99994>JJ
 
 J*"	
 k))r?   rR   c                     |\  }}}} | ||                     dd           |                     dd           |                     dd           |                     dd           |                     dd           |||	  	        S )Nr"   r#   r$   r%   r&   	r)   r"   r#   r$   r%   r&   r'   r(   r*   )get)	r9   rQ   rR   
outer_sizeouter_strider)   r'   r(   r*   s	            r=   __tensor_unflatten__z/SparseSemiStructuredTensor.__tensor_unflatten__   s     NYJ(*;]s $$Xt44""6400"&&z488 $$Xt44(5(9(9-t) ) '@/'
 
 
 	
r?   c                     |j         | j        vrt          | j         d|j         d           | j        |j                  ||||          S )NzI only supports a specific set of operations, can't perform requested op (rB   )_overloadpacketr!   NotImplementedErrorrE   )r9   functypesargsr;   s        r=   __torch_dispatch__z-SparseSemiStructuredTensor.__torch_dispatch__   sp    s':::%< @ @/3}@ @ @   9s"4#78udFSSSr?   Nc                     t          | dd          it          j        j        j        t
          t          j        j        j        t          t          j        j        j        t          t          j        j        j
        t          t          j        j        j        t          t          j        j        j        t          t          j        j        j        t           t          j        j        j        t$          t          j        j        j        t$          t          j        j        j        t*          t          j        j        j        t.          t          j        j        j        t          i| _        || j                            |           dS dS dS )zT
        Loads the op overload sparse dispatch table for the current class.
        r!   N)rK   r3   opsatenvaluesr   indicesr   is_same_sizer   detach_detachr   tr   viewr   mmr   matmuladdmmr   linearr   _to_copyr!   update)r9   custom_dispatch_tables     r=   r2   z/SparseSemiStructuredTensor._load_dispatch_table   s    
 3)4008	%'9	&(;	+-@	&(;	%'9	 -	#%5	!>	%~	$&7	%'9	')<#C %0#**+@AAAAA! 98 10r?   original_tensorc           	      (   |j         st          d|j         d          |                                dk    r%t          d|                                 d          |                                st          d          |j        | j        vrt          d|j         d          |j        \  }}| j        |j                 j        }| j        |j                 j	        }||k     s||z  s||k     s||z  rt          d	|j         d
| d| d          dS )z_
        Assert that the given tensor is valid for semi-structured sparse compression.
        zError original_tensor.device= z= is not supported! Only CUDA tensors are currently supported.   zError original_tensor.dim = z; is not supported! Only 2d tensors are currently supported.zXError original_tensor is not contiguous!Only contiguous tensors are currently supported.zError original_tensor.dtype zO is not a supported dtype! dtype must be one of: {cls._DTYPE_SHAPE_CONSTRAINTS}zError original_tensor.shape zS is not supported! Both dimensions must be larger or equal than and a multiple of (z, rB   N)
is_cudaRuntimeErrorr,   dimis_contiguousr-   r   r)   sparse_min_rowssparse_min_cols)r9   rr   mnmin_rowsmin_colss         r=    _validate_device_dim_dtype_shapez;SparseSemiStructuredTensor._validate_device_dim_dtype_shape   s    & 	=1G = = =     A%%;/B/B/D/D ; ; ;   ,,.. 	C    (DDDG/D G G G   $1/0EFV/0EFVx<<1x<<1x<<1x<<k/D k kS[k k_gk k k   ,8<r?   dense_inputc                 P   |                                 dk    sJ |j        \  }}| j        |j                 j        }| j        |j                 j        }||k     s||z  r| |z  nd}||k     s||z  r| |z  nd}|s|r)t          j        j        	                    |d|d|f          S |S )z
        Calculates padding for dense tensor and pads tensor if necessary.
        If padding is not required, this function returns the original tensor.
        rt   r   )
rw   r)   r   r-   dense_min_rowsdense_min_colsr3   nn
functionalpad)r9   r   r{   r|   r}   r~   to_pad_mto_pad_ns           r=   _pad_dense_inputz+SparseSemiStructuredTensor._pad_dense_input  s       A%%%%  1/0ABQ/0ABQ %&LLALLA2==a$%LLALLA2==a 	x 	8&**;Ha8RSSSr?   c                     | j         d         }t          j        | t          j        || j        | j                            S )N)r-   r,   )r)   r3   rk   eyer-   r,   )rF   cols     r=   to_densez#SparseSemiStructuredTensor.to_dense*  s4    jnxei4:dkRRRSSSr?   c                     t           rJ   r\   r9   rr   s     r=   
from_densez%SparseSemiStructuredTensor.from_dense.  s    !!r?   biasBr   c                    t           rJ   r   )rF   r   r   r;   s       r=   _mmzSparseSemiStructuredTensor._mm2  s
     "!r?   )Fr   FrJ   )r@   N)(rE   
__module____qualname____doc__r   int__annotations__r   r3   r-   r   r   boolr   r   strr   r   r7   rP   staticmethodSizer>   rG   r	   r   rS   classmethodrY   _C_disabled_torch_function_impl__torch_function__r   r`   r2   r   r   r   r   r    r?   r=   r   r   %   s         " OS"5;0N#NOOOOND!OT!!!%*d***LLL(H,----U\""""
5<
    u|$$$$U\""""!)%,!7777####WWWI +0!"#P PzP &P u|$	P
 5<(P &P &.el%;P $(P P P P P \Pd@# @ @ @ @*	tCy%
D#t ;<<	=* * * * 
 5:tS$67
 

 
 
 [
, ?Tc T T T [T B B B B [B, )u| )PT ) ) ) [)V 5< EL    [*T T T " ":V " " " [" (,	" " "<" u|$	" 
" " " " " "r?   r   Frr   
transposedr@   c                     |rt          j        dt          d           t          j        rt
          j        j        nt
          j        j        }|	                    |           S )a	  
    This function converts a dense tensor into a sparse semi-structured tensor.
    It will return a SparseSemiStructuredTensor, a subclass of torch.Tensor.

    This function will check to ensure the dense tensor has the right dtype, size, dims, and device.
    We currently only support semi-structured sparse tensors for 2d CUDA tensors.
    Additionally, your tensor must be a positive multiple of the mininum sparse block size, given in
    `_DTYPE_TO_SHAPE_CONSTRAINTS` for each dtype (float32, float16, bfloat16, int8).

    Args:
        original_tensor (Tensor): the dense tensor to convert
        transposed (bool, optional): deprecated arg to be removed in another release. Do not use.
    Returns:
        SparseSemiStructuredTensor: A sparse semi-structured tensor created from the given original_tensor
    Raises:
        None
    Example:
        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
        >>> A = torch.Tensor([0, 0, 1, 1]).tile((128, 32)).half().cuda()
        tensor([[0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                ...,
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.],
                [0., 0., 1.,  ..., 0., 1., 1.]], device='cuda:0', dtype=torch.float16)
        >>> A_sparse = to_sparse_semi_structured(A)
        SparseSemiStructuredTensor(shape=torch.Size([128, 128]))
        >>> A_sparse.values()
        tensor([[1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                ...,
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.],
                [1., 1., 1.,  ..., 1., 1., 1.]], device='cuda:0', dtype=torch.float16),
        >>> A_sparse.indices()
        tensor([[-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                ...,
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370],
                [-4370, -4370, -4370,  ..., -4370, -4370, -4370]], device='cuda:0', dtype=torch.int16))
    zSetting transpose from `to_sparse_semi_structured` is deprecated and will be removed in a future release. `SparseSemiStructuredTensor` only support contiguous input tensors.rt   )
stacklevel)
r/   r0   FutureWarningr   r   r3   sparser   r   r   )rr   r   SPARSE_SUBCLASSs      r=   r   r   <  sn    b  
R 	
 	
 	
 	
 &4	?66\>  %%o666r?   c                   ^    e Zd ZdZdZej         edddd          ej         edddd          ej	         edddd          ej
         edddd          iZed	ej        d
d fd            Z fdZe	 dd	ej        d
dfd            Zdddej        deej                 d
ej        fdZ xZS )r   a  
    This class implements semi-structured sparsity for the CUTLASS backend.


    In this implementation, the specified elements and metadata are stored seprately,
    in packed and meta respectively.

    When _FORCE_CUTLASS is set, or when cuSPARSELt is not available, this subclass calls into _sparse_semi_structured_(mm|addmm) and
    sparse_semi_structured_from_dense for conversion to the compressed format.
    cutlass          @         rr   r@   c           	          |                      |           t          |          \  }} | |j        ||d d d |j                  S )Nr"   r#   r$   r%   r&   r*   )r   r
   r)   r*   )r9   rr   sparse_tensor_cutlassmeta_tensor_cutlasss       r=   r   z,SparseSemiStructuredTensorCUTLASS.from_dense  sd     	,,_=== 6oFF	
!s!($(,)7
 
 
 	
r?   c                     | j         | j        J | j         j        dk    rt          | j        | j                   nt	                                                      S )Nrt   )r#   r"   ndimr   superr   )rF   rD   s    r=   r   z*SparseSemiStructuredTensorCUTLASS.to_dense  sa    y$)@)@)@ y~""	 4	  
 !!##	
r?    r   c           	      j    t          j        ||d          \  }}}}} | |j        |||||d          S )a  
        This function takes in a unpruned dense tensor and runs a (branchless) static sort across a 4x4 tile.

        It greedily picks the largest values in the tile, upholding the 2:4 sparsity constraint across both rows and columns.
        The algorithm used to prune the matrix is implemented in `_sparse_semi_structured_tile`.

        Then it creates the packed and meta tensors for the compressed sparse representation of the pruned dense tensor.
        It also calculates the packed_t and meta_t tensors for the compressed sparse representation of the transposed
        pruned dense tensor.
        Since we cannot transpose the compressed representations, we store both for the fw/bw pass respectively.

        Finally, this function also computes a compressed swizzled bitmask that encodes the sparsity pattern
        This can be used in the backward pass to mask the gradients.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to CUTLASS semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]                                    -> metadata

                                                  -> pack to transposed CUTLASS      -> packed_t
                                                     semi-structured representation  -> metadata_t

                                                  -> compute swizzled bitmask        -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same five outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUTLASS
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cutlass, meta_cutlass = sparse_semi_structured_from_dense_cutlass(pruned)
        packed_t_cutlass, meta_t_cutlass = sparse_semi_structured_from_dense_cutlass(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUTLASS(dense.shape, packed_cutlass, meta_cutlass, packed_t_cutlass, meta_t_cutlass, bitmask)
        ```
        T	algorithmuse_cutlassFr   r3   _sparse_semi_structured_tiler)   r9   rr   r   r"   r#   r$   r%   r&   s           r=   prune_dense_static_sortz9SparseSemiStructuredTensorCUTLASS.prune_dense_static_sort  sh    b .yd
 
 
	
'
 s!(C
 
 
 	
r?   Nr   r   r   c                   t          |t                    rt          d          | j        j        }| j        dk    s|j        dk    rt          d| d          | j        | j        t          d| d          |!t          j
        | j        | j        |          }n!t          j        || j        | j        |          }|d | j        d                  S )NZ`SparseSemiStructuredTensor @ SparseSemiStructuredTensor` is not supported by the hardwarert   `)` matmul: Broadcasting is not implemented$` matmul: operation is not supportedr   )
isinstancer   r6   rD   rE   r   r\   r"   r#   r3   _sparse_semi_structured_mm_sparse_semi_structured_addmmr)   )rF   r   r   r;   cls_nameress         r=   r   z%SparseSemiStructuredTensorCUTLASS._mm  s     a344 	l   >*9>>QVq[[%GHGGG   ;$)"3%BHBBB   |6t{DIqQQ9$+ty!  A''r?   r   )rE   r   r   r   r    r3   int8r   float16bfloat16float32r   r   r7   r   r   r   r   r   __classcell__)rD   s   @r=   r   r     sj       	 	 G
222sBCC55b"aCC66r2q!DD55b"aCC	  
#l
	,
 
 
 [
$	
 	
 	
 	
 	
 68<
 <
#l<
	%<
 <
 <
 [<
~ BF( ( (((0(>(	( ( ( ( ( ( ( (r?   r   c                   (   e Zd ZdZdZej         edddd          ej         edddd          ej	         edddd          iZ
edej        dd fd            Ze	 ddej        dd
fd            Zdddej        deej                 dej        fdZdS )r   a  
    The cuSPARSELt backend expects the specified elements and the metadata to be stored in a single tensor:
    packed = [ specified elements of original tensor | metadata ]
    For an original tensor of size (m, k) we expect the first m * k // 2 elements to be the kept elements
    The rest of the tensor is metadata. Since there is only one tensor, we only use the packed and packed_t
    attributes respectively.

    cuSPARSELt also supports transposition fusion, which is necessary for performant 2:4 sparse training, as well
    as specifying alg_id, a config that affects the performance of the matmul depending on matmul sizes.
    
cusparseltr   r   r   rr   r@   c                     |                      |            | |j        t          j        |          d d d d t          j        t          j        |j        	  	        S )NrU   )r   r)   r3   _cslt_compressr   r   r   r*   r   s     r=   r   z/SparseSemiStructuredTensorCUSPARSELT.from_dense  sc     	,,_===s!''88(,&@&P8H)7

 

 

 
	
r?   r   r   c           	      j    t          j        ||d          \  }}}}} | |j        |||||d          S )a  
        This function does the same thing as described in SparseSemiStructuredCUTLASS, but uses the cuSPASRELt metadata
        layout and sparse matmul.

        The only functional difference is that cuSPARSELt stores `metadata` and `packed` together into a single tensor.

        [9 1 7 4]                       [9 0 7 0]
        [1 2 3 0]                       [0 2 0 0]
        [8 3 5 4] -> prune 4x4 tile  -> [8 0 0 4] -> pack to cuSPARSELT semi-structured -> packed
        [1 2 6 2]                       [0 0 6 2]

                                                  -> pack to transposed cuSPARSELt      -> packed_t
                                                     semi-structured representation

                                                  -> compute swizzled bitmask           -> compressed_swizzled_bitmask


        The equivalent PyTorch code to create the same three outputs from the dense tensor can be found below:
        ```
        from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
        from torch.sparse._semi_structured_conversions import _sparse_semi_structured_tile, _compute_compressed_swizzled_bitmask

        pruned = _sparse_semi_structured_tile(dense)
        packed_cusparselt = torch._cslt_compress(pruned)
        packed_t_cusparselt = torch._cslt_compress(pruned.t().contiguous())
        bitmask = _compute_compressed_swizzled_bitmask(pruned)

        SparseSemiStructuredTensorCUSPARSELT(dense.shape, packed_cutlass, None, packed_t_cutlass, None, bitmask)
        ```
        Fr   r   r   r   s           r=   r   z<SparseSemiStructuredTensorCUSPARSELT.prune_dense_static_sort/  sh    P .ye
 
 
	
'
 s!(C
 
 
 	
r?   Nr   r   r   c                   t          |t                    rt          d          | j        dk    s|j        dk    rt	          d| j        j         d          |j        | j        k    rWt	          d| j        j         dt          | j	                   dt          |j	                   d| j         d|j         d	          |W|j        | j        k    rGt	          d| j        j         dt          | j	                   dt          |j	                   d
          | j
        t	          d| j        j         d          t          j        | j
        ||| j        | j                  }| j        r|                                n|S )Nr   rt   r   r   z` matmul: trying to do `A=z @ B=z`, with A.dtype=z and B.dtype=zH. This operation is only supported when A and B have the same data type.z + C`, with A.dtype=B.dtype={self.dtype} and C.dtype={B.dtype}. This operation is only supported when A, B and C have the same data type.r   )r   transpose_resultalg_id)r   r   r6   r   r\   rD   rE   r-   tupler)   r"   r3   _cslt_sparse_mmr'   r(   ri   )rF   r   r   r;   r   s        r=   r   z(SparseSemiStructuredTensorCUSPARSELT._mme  s    a344 	l   9>>QVq[[%VDN+VVV   7dj  %YDN+ Y YuTZGXGX Y Y_defel_m_m Y Y $
Y Y9:Y Y Y  
 
dj 8 8%\DN+ \ \uTZGXGX \ \_defel_m_m \ \ \  
 ;%QDN+QQQ   '!%!?-  C #<E355777#Er?   r   )rE   r   r   r   r    r3   r   r   r   r   r   r   r7   r   r   r   r   r   r?   r=   r   r     s8       	 	 G
222r2rBB55b"aCC66r2q!DD  
#l
	/
 
 
 [
  683
 3
#l3
	%3
 3
 3
 [3
l BF#F #F #F#F(0(>#F	#F #F #F #F #F #Fr?   r   )F) r/   collectionsr   typingr   r   r   r   r   r	   r3   )torch.sparse._semi_structured_conversionsr
   r   !torch.sparse._semi_structured_opsr   r   r   r   r   r   r   r   r   __all__r   r7   r   r   r   r   r   r   r?   r=   <module>r      s    " " " " " " = = = = = = = = = = = = = = = =        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   ",$C" " T" T" T" T" T" T" T" T"r A7 A7\A7A7  A7 A7 A7 A7HH( H( H( H( H((B H( H( H(V}F }F }F }F }F+E }F }F }F }F }Fr?   