
    Χg_              "          d Z ddlmZmZmZmZmZ ddlZddlmZ ddl	m
Z
mZmZmZmZmZmZmZmZmZmZmZmZ ddgZ G d	 de          Zd
de de de de
 d	z   e_         dee         dee         dee         dee         dee         dedededededededededefdZdee         dee         dee         dee         dee         dedededededededededefdZ ee          	 	 	 	 	 	 d#dee         dee         dee         dee         dee         ded!ee         dededededededededef d"            ZdS )$z'Implementation for the RAdam algorithm.    )castListOptionalTupleUnionN)Tensor   )_capturable_doc_default_to_fused_or_foreach_differentiable_doc_disable_dynamo_if_unsupported_foreach_doc!_get_capturable_supported_devices_get_scalar_dtype
_get_value_maximize_doc_use_grad_for_differentiable_view_as_real	OptimizerParamsTRAdamradamc                        e Zd Z	 	 	 	 	 ddddddded	eeef         d
eeef         dededede	e         dededef fdZ
 fdZd Zedd            Z xZS )r   MbP?g?g+?:0yE>r   FN)foreachmaximize
capturabledifferentiableparamslrbetasepsweight_decaydecoupled_weight_decayr   r   r   r    c                8   t          |t                    r'|                                dk    rt          d          d|k    st          d|           d|k    st          d|           d|d         cxk    rdk     sn t          d|d                    d|d         cxk    rdk     sn t          d	|d                    d|k    st          d
|           t	          |||||||	||
	  	        }t                                          ||           d S )Nr	   zTensor lr must be 1-element        zInvalid learning rate: zInvalid epsilon value: r         ?z#Invalid beta parameter at index 0: z#Invalid beta parameter at index 1: zInvalid weight_decay value: )	r"   r#   r$   r%   r   r   r   r&   r    )
isinstancer   numel
ValueErrordictsuper__init__)selfr!   r"   r#   r$   r%   r&   r   r   r   r    defaults	__class__s               M/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/optim/radam.pyr/   zRAdam.__init__   se    b&!! 	<bhhjjAoo:;;;byy;r;;<<<czz<s<<===eAh$$$$$$$$M58MMNNNeAh$$$$$$$$M58MMNNNl""JLJJKKK%!#9)

 

 

 	*****    c                    t                                          |           | j        D ].}|                    dd            |                    dd           |                    dd           |                    dd           |                    dd           |d         D ]}| j                            |g           }t          |          dk    rt          j        |d	                   sjt          |d	                   }|d         r(t          j
        |t                      |j        
          n!t          j
        |t                                |d	<   0d S )Nr   r   Fr    r&   r   r!   r   stepdtypedevicer8   )r.   __setstate__param_groups
setdefaultstategetlentorch	is_tensorfloattensorr   r9   )r0   r>   grouppp_statestep_valr2   s         r3   r;   zRAdam.__setstate__F   sf   U###& 	 	EY---Z///-u5555u===\51118_ 
 
*..B//w<<1$$U_WV_-M-M$$WV_55H
 !.O$,=,?,?    #\(:K:M:MNNN FO	
	 	r4   c                    d}|d         D ]x}|j         m|t          j        |          z  }|                    |           |j         j        rt          d          |                    |j                    | j        |         }	t          |	          dk    r|d         r(t          j        dt                      |j
                  n!t          j        dt                      	          |	d
<   t          j        |t          j                  |	d<   t          j        |t          j                  |	d<   |                    |	d                    |                    |	d                    |                    |	d
                    z|S )NFr!   z'RAdam does not support sparse gradientsr   r    r7   r(   r:   r6   )memory_formatexp_avg
exp_avg_sq)gradrA   
is_complexappend	is_sparseRuntimeErrorr>   r@   zerosr   r9   rD   
zeros_likepreserve_format)
r0   rE   params_with_gradgradsexp_avgsexp_avg_sqsstate_stepshas_complexrF   r>   s
             r3   _init_groupzRAdam._init_groupZ   s    x 	2 	2Av!u/222 ''***6# R&'PQQQQV$$$
1u::?? !.JB.?.A.A!(SSSS"\#5F5H5HIII &M (-'7)>( ( (E)$ +0*:)>+ + +E,' i 0111""5#6777""5=111r4   c                    |                                   d}|5t          j                    5   |            }ddd           n# 1 swxY w Y   | j        D ]}g }g }g }g }g }t	          t
          t          t          f         |d                   \  }	}
|                     ||||||          }t          ||||||	|
|d         |d         |d         |d         |d         |d         |d	         |d
         |           |S )zPerform a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        Nr#   r"   r%   r$   r   r   r   r    r&   )beta1beta2r"   r%   r$   r   r   r   r    r&   r[   )	 _cuda_graph_capture_health_checkrA   enable_gradr<   r   r   rC   r\   r   )r0   closurelossrE   rV   rW   rX   rY   rZ   r^   r_   r[   s               r3   r6   z
RAdam.step}   s~    	--///"$$ ! !wyy! ! ! ! ! ! ! ! ! ! ! ! ! ! ! & 	 	E-/"$E%'H(*K(*KeUl 3U7^DDLE5**'+{ K  ;">2%Lz*i( .$%56',-E'F'!    & s   AA
A)r   r   r   r   FN)__name__
__module____qualname__r   r   rC   r   r   boolr   r/   r;   r\   r   r6   __classcell__)r2   s   @r3   r   r      s.        $(%1',&+ #' $&+ &+ &+&+ %- &+ UE\"	&+
 &+ &+ !%&+ $&+ &+ &+ &+ &+ &+ &+ &+ &+P    (! ! !F "- - - "!- - - - -r4   a  Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)}, \:\textit{maximize}                               \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}, \textit{decoupled\_weight\_decay}         \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}\textbf{if} \: \textit{maximize}:                                       \\
            &\hspace{12mm}g_t           \leftarrow   -\nabla_{\theta} f_t (\theta_{t-1})         \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})          \\
            &\hspace{6mm} \theta_t \leftarrow \theta_{t-1}                                       \\
            &\hspace{6mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{12mm}\textbf{if} \: \textit{decoupled\_weight\_decay}                       \\
            &\hspace{18mm} \theta_t \leftarrow \theta_{t} - \gamma \lambda \theta_{t}            \\
            &\hspace{12mm}\textbf{else}                                                          \\
            &\hspace{18mm} g_t \leftarrow g_t + \lambda \theta_{t}                               \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \frac{\sqrt{ (1-\beta^t_2) }}{ \sqrt{v_t} +\epsilon  } \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    This implementation provides an option to use either the original weight_decay implementation as in Adam
    (where the weight_decay is applied to the gradient) or the one from AdamW (where weight_decay is applied
    to the weight) through the decoupled_weight_decay option. When decoupled_weight_decay is set to False
    (default), it uses the original Adam style weight decay, otherwise, it uses the AdamW style which
    corresponds more closely to the `author's implementation`_ in the RAdam paper. Further information
    about decoupled weight decay can be found in `Decoupled Weight Decay Regularization`_.

    a  
    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, Tensor, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        decoupled_weight_decay (bool, optional): whether to use decoupled weight
            decay as in AdamW to obtain RAdamW (default: False)
        z	
        a  

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    .. _author's implementation:
        https://github.com/LiyuanLucasLiu/RAdam
    .. _Decoupled Weight Decay Regularization:
        https://arxiv.org/abs/1711.05101

    r!   rW   rX   rY   rZ   r^   r_   r"   r%   r$   r&   r    r   r   r[   c       
           	 t          |           D ]r\  }}|s||         n||          }||         }||         ||         }t          j                                        sF|rDt	                      }|j        j        |j        j        k    r|j        j        |v sJ d| d            t          j        |          rPt          j        |          }t          j        |          }t          j        |          }t          j                  |dz  }|r|nt          |          }|dk    r5|
r|
                    d||z  z
             n|                    ||          }|                    |d|z
             
                    |                              ||d|z
             d||z  z
  }d||z  z
  ||z  }dd|z
  z  dz
  d|z  ||z  z  z  z
  fd}	fd	}|rLt          j        d
k     |             |            z  d          }|                    ||z  |z  d            d
k    r2|                    ||z   |            z   |            z  d           X|                    ||z  d           td S )NIIf capturable=True, params and state_steps must be on supported devices: .r	   r   alpha)value   c                  D    dz
  dz
  z   z   dz
   dz
  z  z  z  dz  S )N   rp         ?rJ   )rho_infrho_ts   r3   _compute_rectz+_single_tensor_radam.<locals>._compute_rect=  sI    19 aKGaK058:  r4   c                                                       } r|                               } n|                               } dz  | z  S )Nrs   )sqrtaddadd_)exp_avg_sq_sqrtbias_correction2r    r$   rM   s    r3   _compute_adaptive_lrz2_single_tensor_radam.<locals>._compute_adaptive_lrE  sR    (oo//O <"1"5"5c":":"1"6"6s";";$c)_<<r4         @r)   g      )	enumeraterA   _utilsis_compilingr   r9   typerO   view_as_realr   mul_ry   lerp_addcmul_whererz   )r!   rW   rX   rY   rZ   r^   r_   r"   r%   r$   r&   r    r   r   r[   iparamrN   rL   step_tcapturable_supported_devicesr6   bias_correction1bias_corrected_exp_avgrv   r}   updater|   rM   rt   ru   s            ` `               @@@@r3   _single_tensor_radamr      s\   $ f%% ND ND5'6uQxxeAhY1+ ^
Q |((** 	{z 	{+L+N+N(!V]%777L%)EEEEz[wzzz FEE E"" 	8&u--E%d++D(11G+J77J 	!#;vvF););1% ;

1rL001111xx\x:: 	dAI&&&''d!e)'DDDud{?ud{? ")+;!; q5y/A%!d(eTk25EEE	 	 	 	 	 		= 	= 	= 	= 	= 	= 	= 	=  	D[]]__/C/C/E/EEs F JJ-2V;4JHHHHs{{

***,,- $moo&       

1B6d
CCCC]ND NDr4   c       
           %& t          |           dk    rd S |r
J d            t          j                                        sI|rGt	          d          %t          %fdt          | |          D                       sJ d% d            t          j        | ||||g          }|	                                D ]\  \  }}}}}}t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          t          t                   |          }t          j                                        s9|d         j        r,t          j        |t          j        dd	
          d           nt          j        |d           |rt!          ||||           |rt          j        |          }ddz
  z  dz
  &|rt          j        |          }t          j        |           t          j        |d           t          j        |          }t          j        ||           t          j        |d           t          j        ||           t          j        |           t          j        |&           |}n&fd|D             }|dk    rO|
rt          j        |d|z  z
             n1|rt          j        |||           nt          j        |||          }t          j        ||dz
             t          j        |           t          j        |||dz
             ~|rt          j        |d          }t          j        |d          }t          j        ||           ~t          j        |&           &dz
  &dz
  z  &t          j        |&          } t          j        ||            ~ t          j        |           d t          ||          D             }!~~d |!D             }"t          j        |"           t          j        |          }t          j        |           t          j        |d           t          j        |"|           t          j        |"           t          j        |          }t          j        |           t          j        |d           t          j        |           t          j        |           t          j        ||!           ~!t          j        |           t          j        ||           ~nb&fd|D             }!d |!D             }#fd|D             }fdt          |#|          D             }"fdt          ||!|          D             }t          j        |          }$t          j        |$|	           t          j        |$|           t          j        |$           t          j        |$|"           t          j        |||$           d S )Nr   z#_foreach ops don't support autogradF)supports_xlac              3   n   K   | ]/\  }}|j         j        |j         j        k    o|j         j        v V  0d S rd   )r9   r   ).0rF   r6   r   s      r3   	<genexpr>z&_multi_tensor_radam.<locals>.<genexpr>}  s]       
 
 4 HMT[-- >!==
 
 
 
 
 
r4   rk   rl   r)   cpu)r9   rm   r	   rp   c           	          g | ]@}d t          |          z  t          |          z  z  dt          |          z  z
  z  z
  AS )rp   r	   r   )r   r6   r_   rt   s     r3   
<listcomp>z'_multi_tensor_radam.<locals>.<listcomp>  st         T""#Jt,,,. u
4 0 00022  r4   rr   c                 H    g | ]\  }}t          j        |d k    |d           S )r~   r(   rA   r   )r   nru   s      r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s;       5=QECKC00  r4   c                 B    g | ]}t          j        |d k    dd          S )r   r(   r)   r   r   rects     r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s*    QQQDD1Hc3 ? ?QQQr4   c                 `    g | ]*}|d k    r |dz
  |dz
  z  z  dz
  dz
  z  |z  z  dz  nd+S )   rr   rp   rs   r   rJ   )r   ru   rt   s     r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s~         199 QYqy"  !!4u<>
     r4   c                 "    g | ]}|d k    rd ndS )r   r)   rJ   r   s     r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s$    CCCdq11cCCCr4   c                 :    g | ]}d t          |          z  z
  S )r	   r   )r   r6   r^   s     r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s8          26EZ----     r4   c                 ,    g | ]\  }}|z  |z  d z  S )rJ   )r   r   bcr"   s      r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  s7          *2$dR2%     r4   c                 `    g | ]*\  }}}d t          |          z  z
  dz  |z  |z  z  dz  +S )r	   rs   r   r   )r   r6   r   r   r_   r"   s       r3   r   z'_multi_tensor_radam.<locals>.<listcomp>  sX          "D$ ez$////C7BINKbP     r4   )r@   rA   r   r   r   allzipr   "_group_tensors_by_device_and_dtypevaluesr   r   r   is_cpu_foreach_add_rD   r   _foreach_neg_foreach_pow_foreach_neg__foreach_mul__foreach_div__foreach_add_foreach_lerp__foreach_addcmul__foreach_sub_foreach_mul_foreach_sqrt__foreach_sqrt_foreach_reciprocal_)'r!   rW   rX   rY   rZ   r^   r_   r"   r%   r$   r&   r    r   r   r[   grouped_tensorsgrouped_params_grouped_grads_grouped_exp_avgs_grouped_exp_avg_sqs_grouped_state_steps__grouped_paramsgrouped_gradsgrouped_exp_avgsgrouped_exp_avg_sqsgrouped_state_stepsr   r|   
rho_t_listnumsub2denomr   unrect_step_sizeunrectifiedbufferr   rt   s'        ```                             @@r3   _multi_tensor_radamr   a  s   $ 6{{aDDDDDD <$$&& w: w'H(
 (
 (
$  
 
 
 
 v{33
 
 
 
 
 	w 	w wWsvvv		w 	w 	w  B	+{; O ""$$[J [J 		 	d6lO<<T&\>::V.?@@"4<1EFF"4<1EFF |((** 	8/B1/E/L 	8#U\#e%D%D%DC      3Q777 	/?AT    	>!.}==M q5y/A%
  	$1%9LMM 0111 0!444$1%9LMM 02EFFF 0!444 02BCCC 0111 0':::)JJ     0  J 1% #NA\8I4IJJJJ  '%~\     %*$6%~\% % %M
 	-}a%iHHH/777q5y	
 	
 	

  >	$Z33C%j!44DT***W---{w{3G&z7;;EU+++ %%% ADS*AUAU  D QQDQQQ 0"555$1%9LMM 0111 0!444 02BCCC 0111$1%9LMM 0111 0!444 !1222 0"555 0$777 0111 02BCCC      (  D DCdCCCK       :M            69+GW6X6X              &)*=tEU&V&V     
 $%899FC(((F$4555"6***F$4555 	0@&IIIIw[J [Jr4   )single_tensor_fnFr   c                t   t          d |D                       st          d          |t          | |d          \  }}|r-t          j                                        rt          d          |r&t          j                                        st          }nt          } || ||||||||||
||||	           dS )zpFunctional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    c              3   J   K   | ]}t          |t          j                  V  d S rd   )r*   rA   r   )r   ts     r3   r   zradam.<locals>.<genexpr>>  s.      @@qz!U\**@@@@@@r4   zPAPI has changed, `state_steps` argument must contain a list of singleton tensorsNF)	use_fusedz6torch.jit.script not supported with foreach optimizers)
r^   r_   r"   r%   r$   r   r&   r    r   r[   )r   rR   r   rA   jitis_scriptingr   r   )r!   rW   rX   rY   rZ   r&   r   r    r   r[   r   r^   r_   r"   r%   r$   r   funcs                     r3   r   r   $  s   4 @@K@@@@@ 
^
 
 	
 1Ne
 
 

7  U59))++ USTTT $uy--// $"#D!5%     r4   )FNFFFF)__doc__typingr   r   r   r   r   rA   r   	optimizerr
   r   r   r   r   r   r   r   r   r   r   r   r   __all__r   rC   rh   r   r   r   rJ   r4   r3   <module>r      sL   / . 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                    " G
N N N N NI N N Nd2f 
  
  
  
  gK ``DL`D<`D 6l`D f	`D
 f`D `D `D 	`D `D 
`D !`D `D `D `D  !`D `D `D `DF@JL@J<@J 6l@J f	@J
 f@J @J @J 	@J @J 
@J !@J @J @J @J  !@J @J @J @JF  1EFFF $)" ; ;L;<; 6l; f	;
 f; !; d^; ; ; ; ; ;  !;" 	#;$ %;& 
'; ; ; GF; ; ;r4   