
    Χg                     p    d dl mc mZ d dlmZ ddlmZ ddgZ G d de          Z	 G d de          Z
dS )	    N)Tensor   )ModulePairwiseDistanceCosineSimilarityc            	       t     e Zd ZU dZg dZeed<   eed<   eed<   	 dd	ededed
df fdZde	de	d
e	fdZ
 xZS )r   aM  
    Computes the pairwise distance between input vectors, or between columns of input matrices.

    Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero
    if ``p`` is negative, i.e.:

    .. math ::
        \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,

    where :math:`e` is the vector of ones and the ``p``-norm is given by.

    .. math ::
        \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.

    Args:
        p (real, optional): the norm degree. Can be negative. Default: 2
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-6
        keepdim (bool, optional): Determines whether or not to keep the vector dimension.
            Default: False
    Shape:
        - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`
        - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1
        - Output: :math:`(N)` or :math:`()` based on input dimension.
          If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.

    Examples::
        >>> pdist = nn.PairwiseDistance(p=2)
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> output = pdist(input1, input2)
    )normepskeepdimr	   r
   r          @ư>FpreturnNc                 r    t                                                       || _        || _        || _        d S N)super__init__r	   r
   r   )selfr   r
   r   	__class__s       U/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/nn/modules/distance.pyr   zPairwiseDistance.__init__1   s4     		    x1x2c                 P    t          j        ||| j        | j        | j                  S r   )Fpairwise_distancer	   r
   r   r   r   r   s      r   forwardzPairwiseDistance.forward9   s!    "2r49dhMMMr   )r   r   F)__name__
__module____qualname____doc____constants__float__annotations__boolr   r   r   __classcell__r   s   @r   r   r   
   s          B /..M
KKK	JJJMMM BG #(:>	     N& Nf N N N N N N N N Nr   c                   d     e Zd ZU dZddgZeed<   eed<   ddededdf fdZd	e	d
e	de	fdZ
 xZS )r   a  Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.

    .. math ::
        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.

    Args:
        dim (int, optional): Dimension where cosine similarity is computed. Default: 1
        eps (float, optional): Small value to avoid division by zero.
            Default: 1e-8
    Shape:
        - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`
        - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,
              and broadcastable with x1 at other dimensions.
        - Output: :math:`(\ast_1, \ast_2)`
    Examples::
        >>> input1 = torch.randn(100, 128)
        >>> input2 = torch.randn(100, 128)
        >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
        >>> output = cos(input1, input2)
    dimr
   r   :0yE>r   Nc                 d    t                                                       || _        || _        d S r   )r   r   r*   r
   )r   r*   r
   r   s      r   r   zCosineSimilarity.__init__W   s+    r   r   r   c                 D    t          j        ||| j        | j                  S r   )r   cosine_similarityr*   r
   r   s      r   r   zCosineSimilarity.forward\   s    "2r48TX>>>r   )r   r+   )r   r    r!   r"   r#   intr%   r$   r   r   r   r'   r(   s   @r   r   r   =   s          * ENM	HHH	JJJ C % 4      
?& ?f ? ? ? ? ? ? ? ? ?r   )torch.nn.functionalnn
functionalr   torchr   moduler   __all__r   r    r   r   <module>r7      s                         1
20N 0N 0N 0N 0Nv 0N 0N 0Nf ?  ?  ?  ?  ?v  ?  ?  ?  ?  ?r   