
    קg                         d dl Z d dlmZ d dlmZ d dlmZ d dlmZ d dl	m
Z
 dgZd Z G d	 d
e          Z G d de          ZdS )    N)Function)once_differentiable)constraints)ExponentialFamily)_size	Dirichletc                     |                     dd                              |          }t          j        | ||          }||| |z                       dd          z
  z  S NT)sum	expand_astorch_dirichlet_grad)xconcentrationgrad_outputtotalgrads        Y/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/distributions/dirichlet.py_Dirichlet_backwardr      s]    b$''11-@@E M599D;!k/!6!6r4!@!@@AA    c                   J    e Zd Zed             Zeed                         ZdS )
_Dirichletc                 Z    t          j        |          }|                     ||           |S N)r   _sample_dirichletsave_for_backward)ctxr   r   s      r   forwardz_Dirichlet.forward   s-    #M22a///r   c                 8    | j         \  }}t          |||          S r   )saved_tensorsr   )r   r   r   r   s       r   backwardz_Dirichlet.backward   s#     ,="1m[AAAr   N)__name__
__module____qualname__staticmethodr   r   r"    r   r   r   r      sX          \
 B B  \B B Br   r   c                        e Zd ZdZd ej        ej        d          iZej        Z	dZ
d fd	Zd fd	Zdd	ed
ej        fdZd Zed             Zed             Zed             Zd Zed             Zd Z xZS )r   a  
    Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`.

    Example::

        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
        >>> m = Dirichlet(torch.tensor([0.5, 0.5]))
        >>> m.sample()  # Dirichlet distributed with concentration [0.5, 0.5]
        tensor([ 0.1046,  0.8954])

    Args:
        concentration (Tensor): concentration parameter of the distribution
            (often referred to as alpha)
    r      TNc                     |                                 dk     rt          d          || _        |j        d d         |j        dd          }}t	                                          |||           d S )Nr)   z;`concentration` parameter must be at least one-dimensional.r   validate_args)dim
ValueErrorr   shapesuper__init__)selfr   r,   batch_shapeevent_shape	__class__s        r   r1   zDirichlet.__init__7   s    ""M   +#0#6ss#;]=PQSQTQT=U[kOOOOOr   c                 ,   |                      t          |          }t          j        |          }| j                            || j        z             |_        t          t          |                              || j        d           | j	        |_	        |S )NFr+   )
_get_checked_instancer   r   Sizer   expandr4   r0   r1   _validate_args)r2   r3   	_instancenewr5   s       r   r9   zDirichlet.expand@   s    ((I>>j-- .55kDDT6TUUi&&) 	' 	
 	
 	
 "0
r   r'   sample_shapereturnc                     |                      |          }| j                            |          }t                              |          S r   )_extended_shaper   r9   r   apply)r2   r=   r/   r   s       r   rsamplezDirichlet.rsampleJ   s?    $$\22*11%88...r   c                 N   | j         r|                     |           t          j        | j        dz
  |                              d          t          j        | j                            d                    z   t          j        | j                                      d          z
  S )N      ?r   )r:   _validate_sampler   xlogyr   r   lgamma)r2   values     r   log_probzDirichlet.log_probO   s     	)!!%(((K*S0%88<<R@@l4-11"55667l4-..222667	
r   c                 H    | j         | j                             dd          z  S r
   )r   r   r2   s    r   meanzDirichlet.meanX   s#    !D$6$:$:2t$D$DDDr   c                 r   | j         dz
                      d          }||                    dd          z  }| j         dk                         d          }t          j        j                            ||                             d          |j	        d                   
                    |          ||<   |S )Nr)   g        )minr   T)axis)r   clampr   allr   nn
functionalone_hotargmaxr/   to)r2   concentrationm1modemasks       r   rX   zDirichlet.mode\   s    -188S8AA!4!4R!>!>>"Q&+++44X(00J2&&(=b(A
 

"T(( 	T
 r   c                     | j                             dd          }| j         || j         z
  z  |                    d          |dz   z  z  S )Nr   T   r)   )r   r   pow)r2   con0s     r   variancezDirichlet.variancef   sP    !%%b$//d((*xx{{dQh')	
r   c                    | j                             d          }| j                             d          }t          j        | j                                       d          t          j        |          z
  ||z
  t          j        |          z  z
  | j         dz
  t          j        | j                   z                      d          z
  S )Nr   rD   )r   sizer   r   rG   digamma)r2   ka0s      r   entropyzDirichlet.entropyo   s    ##B''##B''L+,,0044l22vr***+ "S(EM$:L,M,MMRRSUVVW	
r   c                     | j         fS r   )r   rK   s    r   _natural_paramszDirichlet._natural_paramsy   s    "$$r   c                     |                                                     d          t          j         |                    d                    z
  S )Nr   )rG   r   r   )r2   r   s     r   _log_normalizerzDirichlet._log_normalizer}   s5    xxzz~~b!!ELr$;$;;;r   r   )r'   )r#   r$   r%   __doc__r   independentpositivearg_constraintssimplexsupporthas_rsampler1   r9   r   r   TensorrB   rI   propertyrL   rX   r^   rd   rf   rh   __classcell__)r5   s   @r   r   r   "   s`         	001EqIIO !GKP P P P P P     / /E /5< / / / /

 
 
 E E XE   X 
 
 X

 
 
 % % X%< < < < < < <r   )r   torch.autogradr   torch.autograd.functionr   torch.distributionsr   torch.distributions.exp_familyr   torch.typesr   __all__r   r   r   r'   r   r   <module>ry      s     # # # # # # 7 7 7 7 7 7 + + + + + + < < < < < <       -B B BB B B B B B B B\< \< \< \< \<! \< \< \< \< \<r   