# mypy: allow-untyped-defs

import torch
import torch.ao.nn.intrinsic
import torch.ao.nn.intrinsic.qat
import torch.ao.nn.quantized as nnq


__all__ = ["BNReLU2d", "BNReLU3d"]


class BNReLU2d(nnq.BatchNorm2d):
    r"""
    A BNReLU2d module is a fused module of BatchNorm2d and ReLU

    We adopt the same interface as :class:`torch.ao.nn.quantized.BatchNorm2d`.

    Attributes:
        Same as torch.ao.nn.quantized.BatchNorm2d

    """
    _FLOAT_MODULE = torch.ao.nn.intrinsic.BNReLU2d

    def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
        super().__init__(
            num_features, eps=eps, momentum=momentum, device=device, dtype=dtype
        )

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 4:
            raise ValueError("Input shape must be `(N, C, H, W)`!")
        return torch.ops.quantized.batch_norm2d_relu(
            input,
            self.weight,
            self.bias,
            self.running_mean,
            self.running_var,
            self.eps,
            self.scale,
            self.zero_point,
        )

    def _get_name(self):
        return "QuantizedBNReLU2d"

    @classmethod
    def from_float(cls, mod, use_precomputed_fake_quant=False):
        # TODO: Add qat support for BNReLU2d
        return super().from_float(
            mod, use_precomputed_fake_quant=use_precomputed_fake_quant
        )

    @classmethod
    def from_reference(cls, bn_relu, output_scale, output_zero_point):
        return super().from_reference(bn_relu[0], output_scale, output_zero_point)


class BNReLU3d(nnq.BatchNorm3d):
    r"""
    A BNReLU3d module is a fused module of BatchNorm3d and ReLU

    We adopt the same interface as :class:`torch.ao.nn.quantized.BatchNorm3d`.

    Attributes:
        Same as torch.ao.nn.quantized.BatchNorm3d

    """
    _FLOAT_MODULE = torch.ao.nn.intrinsic.BNReLU3d

    def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
        super().__init__(
            num_features, eps=eps, momentum=momentum, device=device, dtype=dtype
        )

    def forward(self, input):
        # Temporarily using len(shape) instead of ndim due to JIT issue
        # https://github.com/pytorch/pytorch/issues/23890
        if len(input.shape) != 5:
            raise ValueError("Input shape must be `(N, C, D, H, W)`!")
        return torch.ops.quantized.batch_norm3d_relu(
            input,
            self.weight,
            self.bias,
            self.running_mean,
            self.running_var,
            self.eps,
            self.scale,
            self.zero_point,
        )

    def _get_name(self):
        return "QuantizedBNReLU3d"

    @classmethod
    def from_float(cls, mod, use_precomputed_fake_quant=False):
        # TODO: Add qat support for BNReLU3d
        return super().from_float(
            mod, use_precomputed_fake_quant=use_precomputed_fake_quant
        )

    @classmethod
    def from_reference(cls, bn_relu, output_scale, output_zero_point):
        return super().from_reference(bn_relu[0], output_scale, output_zero_point)
