
    קg                         U d dl Z d dlZd dlmZmZ d dlmZ d dlZd dlm	Z	m
Z
  G d d          Zdeded	efd
Zd Zeaeed<   e j        d             Z G d d          ZdS )    N)CallableOptional)
deprecated)KernelRegistrationHandlec                   2    e Zd ZdZdefdZdededefdZdS )	FakeImplHolderz0A holder where one can register an fake impl to.qualnamec                 0    || _         d | _        d | _        d S N)r
   kernellib)selfr
   s     T/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/_library/fake_impl.py__init__zFakeImplHolder.__init__   s    %(,48    funcsourcereturnc                      j         %t          d j         d j         j         d          t          j                             j        d          rt          d j         d          t          j                             j        d          rt          d j         d          t          ||           _          j        E j        	                    d	          d
         }t          j
                            |d           _        t           j                   } j                             j        |d            fd}t          |          S )z}Register an fake impl.

        Returns a RegistrationHandle that one can use to de-register this
        fake impl.
        Nz!register_fake(...): the operator z( already has an fake impl registered at .Metaz already has an DispatchKey::Meta implementation via a pre-existing torch.library or TORCH_LIBRARY registration. Please either remove that registration or don't call register_fake.CompositeImplicitAutograda%   already has an implementation for this device type via a pre-existing registration to DispatchKey::CompositeImplicitAutograd.CompositeImplicitAutograd operators do not need an fake impl; instead, the operator will decompose into its constituents and those can have fake impls defined on them.z::r   FRAGMENTc                  d     j         r  j                                          d  _         d  _        d S r   )r   _destroyr   )r   s   r   deregister_fake_classz6FakeImplHolder.register.<locals>.deregister_fake_classA   s3    x  !!###DKKKr   )r   RuntimeErrorr
   r   torch_C%_dispatch_has_kernel_for_dispatch_keyr   r   splitlibraryLibraryconstruct_meta_kernelimplr   )r   r   r   nsmeta_kernelr   s   `     r   registerzFakeImplHolder.register   s    ;")DM ) );%) ) )  
 899$-PP 	"DM " " "   899M6
 
 	 8DM 8 8 8
 
 
 T6** 8$$T**1-B},,R<<DH+DM4@@dm[&999	 	 	 	 	 ""7888r   N)	__name__
__module____qualname____doc__strr   r   r   r)    r   r   r	   r	      s_        ::9 9 9 9 9
49X 49s 497I 49 49 49 49 49 49r   r	   r
   fake_impl_holderr   c                 p     j         J t          j        j         j                   fd            }|S )Nc                      j         J j         j        fd}t          |          5   j         | i |cd d d            S # 1 swxY w Y   d S )Nc                  0    t          d  d d          )Nz<Attempted to call get_ctx() for the meta implementation for z (implemented at z)You have presumably called get_ctx() because the operator has a data-dependent output shape; if so, there is no such meta implementation and this error is the correct behavior.)r   )r
   r   s   r   error_on_ctxz@construct_meta_kernel.<locals>.meta_kernel.<locals>.error_on_ctxR   s9     28    r   )r   r   set_ctx_getter)argskwargsr4   r   r0   r
   s      @r   r(   z*construct_meta_kernel.<locals>.meta_kernelM   s    &222!(/	 	 	 	 	 	 L)) 	< 	<*#*D;F;;	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	< 	<s   AAA)r   	functoolswrapsr   )r
   r0   r(   s   `` r   r%   r%   J   sU    "..._%,122< < < < < 32<" r   c                      d S r   r/   r/   r   r   get_noner;   b   s    4r   global_ctx_getterc              #   8   K   t           }	 | a d V  |a d S # |a w xY wr   )r<   )
ctx_getterprevs     r   r5   r5   i   s?       D!& D    s    c                   z    e Zd ZdZd Z ede          ddddej        fd	            Z	d
dddej        fdZ
dS )FakeImplCtxzO
    Context object for writing fake implementations for custom operators.
    c                 :    || _         |j        | _        || _        d S r   )
_fake_mode	shape_env
_shape_env_op)r   rC   rF   s      r   r   zFakeImplCtx.__init__y   s    $$.r   zM`create_unbacked_symint` is deprecated, please use `new_dynamic_size` instead)category   Nminmaxr   c                0    |                      ||          S )NrI   )new_dynamic_size)r   rJ   rK   s      r   create_unbacked_symintz"FakeImplCtx.create_unbacked_symint~   s    
 $$#$666r   r   c                   | j         | j         j        s)t          j        j                            | j                  t          |t          j                  st          |t          j                  rt          d| d| d          |dk     rt          d| d          | j         
                                }t          j        j        j                            |||           |S )a	  Constructs a new symint (symbolic int) representing a data-dependent value.

        This is useful for writing the fake implementation (which is necessary
        for torch.compile) for a CustomOp where an output Tensor has a size
        that depends on the data of the input Tensors.

        Args:
            min (int): A statically known inclusive lower bound for this symint. Default: 0
            max (Optional[int]): A statically known inclusive upper bound for this
                symint. Default: None

        .. warning:

            It is important that the ``min`` and ``max`` (if not None) values are set
            correctly, otherwise, there will be undefined behavior under
            torch.compile. The default value of ``min`` is 2 due to torch.compile
            specializing on 0/1 sizes.

            You must also verify that your implementation on concrete Tensors
            (e.g. CPU/CUDA) only returns Tensors where the size that corresponds
            to the symint also has respects these constraint.
            The easiest way to do this is to add an assertion in the CPU/CUDA/etc
            implementation that the size follows these bounds.

        Example::

            >>> # An operator with data-dependent output shape
            >>> lib = torch.library.Library("mymodule", "FRAGMENT")
            >>> lib.define("mymodule::custom_nonzero(Tensor x) -> Tensor")
            >>>
            >>> @torch.library.register_fake("mymodule::custom_nonzero")
            >>> def _(x):
            >>>     # Number of nonzero-elements is data-dependent.
            >>>     # Since we cannot peek at the data in an fake impl,
            >>>     # we use the ctx object to construct a new symint that
            >>>     # represents the data-dependent size.
            >>>     ctx = torch.library.get_ctx()
            >>>     nnz = ctx.new_dynamic_size()
            >>>     shape = [nnz, x.dim()]
            >>>     result = x.new_empty(shape, dtype=torch.int64)
            >>>     return result
            >>>
            >>> @torch.library.impl(lib, "custom_nonzero", "CPU")
            >>> def _(x):
            >>>     x_np = x.numpy()
            >>>     res = np.stack(np.nonzero(x_np), axis=1)
            >>>     return torch.tensor(res, device=x.device)

        Nzctx.new_dynamic_size(min=z, max=zZ): expected min and max to be statically known ints but got SymInt. This is not supported.r   zc, ...): expected min to be greater than or equal to 0: this API can only create non-negative sizes.rI   )rE   allow_dynamic_output_shape_opsr   _subclassesfake_tensorDynamicOutputShapeExceptionrF   
isinstanceSymInt
ValueErrorrN   fxexperimentalsymbolic_shapes_constrain_range_for_size)r   rJ   rK   results       r   rM   zFakeImplCtx.new_dynamic_size   s   f O#?A $ #/KKDHUUUc5<(( 	JsEL,I,I 	*C * *s * * *   77'C ' ' '   7799-GG 	H 	
 	
 	
 r   )r*   r+   r,   r-   r   r   FutureWarningr   rU   rN   rM   r/   r   r   rA   rA   t   s           
 ZW   -.4 7 7 7EL 7 7 7	 7 '(T J J Jel J J J J J Jr   rA   )
contextlibr8   typingr   r   typing_extensionsr   r   torch._library.utilsr   r   r	   r.   r%   r;   r<   __annotations__contextmanagerr5   rA   r/   r   r   <module>rc      s:            % % % % % % % % ( ( ( ( ( (  ; ; ; ; ; ; ; ;<9 <9 <9 <9 <9 <9 <9 <9~C > h    0   ' 8 & & & ! ! ![ [ [ [ [ [ [ [ [ [r   