§
    ×§g—  ã                   ó(   — d dl Zd dlZd„ Zd„ Zd„ ZdS )é    Nc                 óJ   — t           j        j                             | ¦  «        S )zæReturn tensor ids and eager tensors for DeviceData nodes in the
    IR for the passed in lazy tensors.

    TODO: This API is currently ts backend specific. We are working on
    generalizing it to all backends including XLA.
    )ÚtorchÚ_CÚ_lazy_ts_backendÚ _get_tensors_ts_device_data_node©Útensorss    úS/var/www/html/ai-engine/env/lib/python3.11/site-packages/torch/_lazy/computation.pyÚget_tensors_ts_device_data_noder      s   € õ Œ8Ô$×EÒEÀgÑNÔNÐNó    c                 óJ   — t           j        j                             | ¦  «        S )z4Return the graph hash for the passed in lazy tensors)r   r   Ú_lazyÚ_get_graph_hashr   s    r
   Úget_graph_hashr      s   € åŒ8Œ>×)Ò)¨'Ñ2Ô2Ð2r   c                 óL   — t           j        j                             | |¦  «        S )zºRunning the cached computation graph with the given inputs

    TODO: This API is currently ts backend specific. We are working on
    generalizing it to all backends including XLA.
    )r   r   r   Ú_run_cached_graph)Úhash_strÚgraph_inputss     r
   Úrun_cached_graphr      s   € õ Œ8Ô$×6Ò6°xÀÑNÔNÐNr   )Útorch._C._lazyr   Útorch._C._lazy_ts_backendr   r   r   © r   r
   ú<module>r      s\   ðà Ð Ð Ð Ø  Ð  Ð  Ð  ðOð Oð Oð3ð 3ð 3ð
Oð Oð Oð Oð Or   