
    g                     t    d dl mZ d dlmZmZ d dlmZ d dlmc m	Z	 d dlm
Z
 efdZefdZe
fdZefd	ZdS )
    )partial)chainminimize)identityN)yieldifyc           
          |D ]B}t          | |          r0 ||         t          t          t          ||          |            c S C ||           S )a   Apply functions onto recursive containers (tree).

    Explanation
    ===========

    join - a dictionary mapping container types to functions
      e.g. ``{list: minimize, tuple: chain}``

    Keys are containers/iterables.  Values are functions [a] -> a.

    Examples
    ========

    >>> from sympy.strategies.tree import treeapply
    >>> tree = [(3, 2), (4, 1)]
    >>> treeapply(tree, {list: max, tuple: min})
    2

    >>> add = lambda *args: sum(args)
    >>> def mul(*args):
    ...     total = 1
    ...     for arg in args:
    ...         total *= arg
    ...     return total
    >>> treeapply(tree, {list: mul, tuple: add})
    25
    )joinleaf)
isinstancemapr   	treeapply)treer	   r
   typs       Q/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/strategies/tree.pyr   r      sw    8  ) )dC   	)49c')$T"J"J"J"&( ( ) ) ) )	) 4::    c                 p    t          t          |          }t          | t          |t          t
          ifi |S )a   Execute a strategic tree.  Select alternatives greedily

    Trees
    -----

    Nodes in a tree can be either

    function - a leaf
    list     - a selection among operations
    tuple    - a sequence of chained operations

    Textual examples
    ----------------

    Text: Run f, then run g, e.g. ``lambda x: g(f(x))``
    Code: ``(f, g)``

    Text: Run either f or g, whichever minimizes the objective
    Code: ``[f, g]``

    Textx: Run either f or g, whichever is better, then run h
    Code: ``([f, g], h)``

    Text: Either expand then simplify or try factor then foosimp. Finally print
    Code: ``([(expand, simplify), (factor, foosimp)], print)``

    Objective
    ---------

    "Better" is determined by the objective keyword.  This function makes
    choices to minimize the objective.  It defaults to the identity.

    Examples
    ========

    >>> from sympy.strategies.tree import greedy
    >>> inc    = lambda x: x + 1
    >>> dec    = lambda x: x - 1
    >>> double = lambda x: 2*x

    >>> tree = [inc, (dec, double)] # either inc or dec-then-double
    >>> fn = greedy(tree)
    >>> fn(4)  # lowest value comes from the inc
    5
    >>> fn(1)  # lowest value comes from dec then double
    0

    This function selects between options in a tuple.  The result is chosen
    that minimizes the objective function.

    >>> fn = greedy(tree, objective=lambda x: -x)  # maximize
    >>> fn(4)  # highest value comes from the dec then double
    6
    >>> fn(1)  # highest value comes from the inc
    2

    Greediness
    ----------

    This is a greedy algorithm.  In the example:

        ([a, b], c)  # do either a or b, then do c

    the choice between running ``a`` or ``b`` is made without foresight to c
    )	objective)r   r   r   listtupler   )r   r   kwargsoptimizes       r   greedyr   +   s8    D x9555HTD(E59DDVDDDr   c                 j    t          | t          t          j        t          t          j        i|          S )a   Execute a strategic tree.  Return all possibilities.

    Returns a lazy iterator of all possible results

    Exhaustiveness
    --------------

    This is an exhaustive algorithm.  In the example

        ([a, b], [c, d])

    All of the results from

        (a, c), (b, c), (a, d), (b, d)

    are returned.  This can lead to combinatorial blowup.

    See sympy.strategies.greedy for details on input
    )r
   )r   r   branch	multiplexr   r   )r   r
   s     r   
allresultsr   q   s0    ( TD&"2E6<H       r   c                       fdS )Nc           
      h    t          t           t          fi |                               S )N)key)minr   r   )exprr   r   r   s    r   <lambda>zbrute.<locals>.<lambda>   s>    E"<*T"<"<V"<"<T"B"BCC )+ + + r    )r   r   r   s   ```r   bruter$      s(    + + + + + + +r   )	functoolsr   sympy.strategiesr   r   sympy.strategies.corer   sympy.strategies.branch
strategiesr   r   r   r   r   r$   r#   r   r   <module>r*      s          , , , , , , , , * * * * * * ( ( ( ( ( ( ( ( ( , , , , , ,  (        F $ CE CE CE CEL #        0 # + + + + + +r   