
    gc!                        d Z ddlmZmZmZmZ ddlmZmZm	Z	m
Z
 ddlmZmZ ddlmZmZ ddlmZmZ ddlmZ ddlmZmZmZ ed	             Zed
             Zed             Ze ed          fd            Zedd            ZdS )z/High-level polynomials manipulation functions.     )SBasicsymbolsDummy)PolificationFailedComputationFailedMultivariatePolynomialErrorOptionError)allowed_flagsbuild_options)poly_from_exprPoly)symmetric_polyinterpolating_poly)sring)numbered_symbolstakepublicc                 p   t          |ddg           d}t          | d          sd}| g} t          | g|R i |\  }} |j        }t	          ||          }|j        fdt          t          |                    D             g }| D ]A}|                                \  }}	}
|                     |j	          |	j	        | f           Bd t          |
          D             }|j        s2t          |          D ]"\  }\  }}|                    |          |f||<   #|s|\  }|j        s|S |r||fS ||fz   S )a  
    Rewrite a polynomial in terms of elementary symmetric polynomials.

    A symmetric polynomial is a multivariate polynomial that remains invariant
    under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`,
    then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where
    `(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an
    element of the group `S_n`).

    Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
    ``f = f1 + f2 + ... + fn``.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import symmetrize
    >>> from sympy.abc import x, y

    >>> symmetrize(x**2 + y**2)
    (-2*x*y + (x + y)**2, 0)

    >>> symmetrize(x**2 + y**2, formal=True)
    (s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])

    >>> symmetrize(x**2 - y**2)
    (-2*x*y + (x + y)**2, -2*y**2)

    >>> symmetrize(x**2 - y**2, formal=True)
    (s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])

    formalr   T__iter__Fc                 .    g | ]}t                    S  )next).0ir   s     Q/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/polys/polyfuncs.py
<listcomp>zsymmetrize.<locals>.<listcomp>=   s    777tG}}777    c                 F    g | ]\  }\  }}||                                 fS r   )as_expr)r   s_gs       r   r   zsymmetrize.<locals>.<listcomp>E   s-    ???)!Vaa???r   )r   hasattrr   r   r   rangelen
symmetrizeappendr!   zipr   	enumeratesubs)FgensargsiterableRoptresultfprmpolysr   symnon_symr   s                  @r   r(   r(      s   B $9-...H1j!! C"T"""T""DAq9D
d
#
#CkG7777eCII&6&6777GF ? ?,,..1ayqy'*IAIt,<=>>>>??s7A???E: 3!*6!2!2 	3 	3A~W%'2F1II : % 	%5= UH$$r   c                    t          |g            	 t          | g|R i |\  }}n# t          $ r}|j        cY d}~S d}~ww xY wt          j        |j        }}|j        r |                                D ]
}||z  |z   }nGt          ||          |dd         }}|                                D ]}||z  t          |g|R i |z   }|S )a  
    Rewrite a polynomial in Horner form.

    Among other applications, evaluation of a polynomial at a point is optimal
    when it is applied using the Horner scheme ([1]).

    Examples
    ========

    >>> from sympy.polys.polyfuncs import horner
    >>> from sympy.abc import x, y, a, b, c, d, e

    >>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
    x*(x*(x*(9*x + 8) + 7) + 6) + 5

    >>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
    e + x*(d + x*(c + x*(a*x + b)))

    >>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y

    >>> horner(f, wrt=x)
    x*(x*y*(4*y + 2) + y*(2*y + 1))

    >>> horner(f, wrt=y)
    y*(x*y*(4*x + 2) + x*(2*x + 1))

    References
    ==========
    [1] - https://en.wikipedia.org/wiki/Horner_scheme

    N   )r   r   r   exprr   Zerogenis_univariate
all_coeffsr   horner)	r4   r.   r/   r-   r2   excformr?   coeffs	            r   rB   rB   W   s   B $1D111D1133   x #D ;\\^^ 	$ 	$E8e#DD	$ q#,,QRR4\\^^ 	; 	;E8fU:T:::T:::DDKs   & 
A<AAc                 D   t          |           }t          | t                    rE|| v rt          | |                   S t	          t          |                                            \  }}nt          | d         t                    rFt	          t          |            \  }}||v r(t          ||                    |                             S n\|t          d|dz             v rt          | |dz
                     S t	          |           }t	          t          d|dz                       }	 t          ||||                                          S # t          $ rI t                      }t          ||||                                                              ||          cY S w xY w)a)  
    Construct an interpolating polynomial for the data points
    evaluated at point x (which can be symbolic or numeric).

    Examples
    ========

    >>> from sympy.polys.polyfuncs import interpolate
    >>> from sympy.abc import a, b, x

    A list is interpreted as though it were paired with a range starting
    from 1:

    >>> interpolate([1, 4, 9, 16], x)
    x**2

    This can be made explicit by giving a list of coordinates:

    >>> interpolate([(1, 1), (2, 4), (3, 9)], x)
    x**2

    The (x, y) coordinates can also be given as keys and values of a
    dictionary (and the points need not be equispaced):

    >>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
    x**2 + 1
    >>> interpolate({-1: 2, 1: 2, 2: 5}, x)
    x**2 + 1

    If the interpolation is going to be used only once then the
    value of interest can be passed instead of passing a symbol:

    >>> interpolate([1, 4, 9], 5)
    25

    Symbolic coordinates are also supported:

    >>> [(i,interpolate((a, b), i)) for i in range(1, 4)]
    [(1, a), (2, b), (3, -a + 2*b)]
    r   r<   )r'   
isinstancedictr   listr*   itemstupleindexr&   r   expand
ValueErrorr   r,   )dataxnXYds         r   interpolaterU      s   T 	D		A$ &99T!W::C&''11d1gu%% 	&T
##DAqAvv1771::'''  E!QUOO##a!e~~%T

AU1a!e__%%AB!!Q1--44666 B B BGG!!Q1--4466;;AqAAAAABs   (#E AFFrP   c                   
 ddl m} t          t          |            \  }}t	          |          z
  dz
  }|dk     rt          d           ||z   dz   |z   dz             }t          t          |                    D ]5}t          |z   dz             D ]}	||	|f         ||	         z  ||	|dz   f<   6t          |dz             D ]?}t          |z   dz             D ]'}	||	||z
  f          ||	         z  ||	|z   dz   |z
  f<   (@|                                d         
t          
fdt          dz             D                       t          
fdt          |dz             D                       z  S )a  
    Returns a rational interpolation, where the data points are element of
    any integral domain.

    The first argument  contains the data (as a list of coordinates). The
    ``degnum`` argument is the degree in the numerator of the rational
    function. Setting it too high will decrease the maximal degree in the
    denominator for the same amount of data.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import rational_interpolate

    >>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)]
    >>> rational_interpolate(data, 2)
    (105*x**2 - 525)/(x + 1)

    Values do not need to be integers:

    >>> from sympy import sympify
    >>> x = [1, 2, 3, 4, 5, 6]
    >>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]")
    >>> rational_interpolate(zip(x, y), 2)
    (3*x**2 - 7*x + 2)/(x + 1)

    The symbol for the variable can be changed if needed:
    >>> from sympy import symbols
    >>> z = symbols('z')
    >>> rational_interpolate(data, 2, X=z)
    (105*z**2 - 525)/(z + 1)

    References
    ==========

    .. [1] Algorithm is adapted from:
           http://axiom-wiki.newsynthesis.org/RationalInterpolation

    r   )onesr<   z'Too few values for the required degree.   c              3   4   K   | ]}|         |z  z  V  d S Nr   )r   r   rR   r6   s     r   	<genexpr>z'rational_interpolate.<locals>.<genexpr>  s/      77!q!t777777r   c              3   @   K   | ]}|z   d z            |z  z  V  dS )r<   Nr   )r   r   rR   degnumr6   s     r   r[   z'rational_interpolate.<locals>.<genexpr>  s9      AAq!AJN#ad*AAAAAAr   )
sympy.matrices.denserW   rI   r*   r'   r
   r&   max	nullspacesum)rO   r]   rR   rW   xdataydatakcjr   r6   s    ``       @r   rational_interpolaterg      s   R *)))))T
##LE5E

VaA1uuCDDDVaZ!^VaZ!^,,A3vq>>"" + +vzA~&& 	+ 	+AAqD'%(*AaQhKK	+1q5\\ = =vzA~&& 	= 	=A()!QU(|E!H'<Aa!a!##$$	=	aA77777U6A:%6%677777AAAAAAE!a%LLAAAAAB Cr   Nc                    t          |g            t          |t                    r|f|z   d}}	 t          | g|R i |\  } }n## t          $ r}t          dd|          d}~ww xY w| j        rt          d          |                                 }|dk     rt          d          |t          dd          }t          ||          }|t          |          k    r"t          d|d	t          |                    |                                 |                                 }}g d
}
}	t          |dd                   D ]:\  }}t!          |dz   |          }|
||z  z  }|	                    ||f           |
 }
;|	S )a#  
    Generate Viete's formulas for ``f``.

    Examples
    ========

    >>> from sympy.polys.polyfuncs import viete
    >>> from sympy import symbols

    >>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')

    >>> viete(a*x**2 + b*x + c, [r1, r2], x)
    [(r1 + r2, -b/a), (r1*r2, c/a)]

    Nvieter<   z(multivariate polynomials are not allowedz8Cannot derive Viete's formulas for a constant polynomialr6   )startz	required z roots, got )r   rG   r   r   r   r   is_multivariater	   degreerN   r   r   r'   LCrA   r+   r   r)   )r4   rootsr.   r/   r2   rC   rQ   lccoeffsr3   signr   rE   polys                 r   ri   ri     s   " $% ,hote11D111D1133 1 1 1C0001 	 8)68 8 	8 	


A1uuFH H 	H } A...NNECJJj3u:::FGGGBrDFfQRRj))  5a!eU++eBhtUm$$$uMs   A 
A#AA#rZ   )__doc__
sympy.corer   r   r   r   sympy.polys.polyerrorsr   r   r	   r
   sympy.polys.polyoptionsr   r   sympy.polys.polytoolsr   r   sympy.polys.specialpolysr   r   sympy.polys.ringsr   sympy.utilitiesr   r   r   r(   rB   rU   rg   ri   r   r   r   <module>r|      s   5 5 0 / / / / / / / / / / /. . . . . . . . . . . . A @ @ @ @ @ @ @ 6 6 6 6 6 6 6 6( ( ( ( ( ( ( ( # # # # # # : : : : : : : : : :D% D% D%N 2 2 2j >B >B >BB )0 8C 8C 8C 8Cv 5 5 5 5 5 5r   