
    gQ                        d Z g dZddlmZ ddlmZmZ ddlmZ ddl	m
Z
mZ ddlmZ ddlmZ dd	lmZmZ dd
lmZ ddlmZ  G d de          Z G d de          Z G d de          Z G d de          Z G d de          Z G d de          Z G d de          Z G d de          Z G d de          Zd&dZ d  Z!d! Z"d" Z#e#Z$d# Z%d$ Z&d%S )'a  
Gaussian optics.

The module implements:

- Ray transfer matrices for geometrical and gaussian optics.

  See RayTransferMatrix, GeometricRay and BeamParameter

- Conjugation relations for geometrical and gaussian optics.

  See geometric_conj*, gauss_conj and conjugate_gauss_beams

The conventions for the distances are as follows:

focal distance
    positive for convergent lenses
object distance
    positive for real objects
image distance
    positive for real images
)RayTransferMatrix	FreeSpaceFlatRefractionCurvedRefraction
FlatMirrorCurvedMirrorThinLensGeometricRayBeamParameterwaist2rayleighrayleigh2waistgeometric_conj_abgeometric_conj_afgeometric_conj_bfgaussian_conjconjugate_gauss_beams    )Expr)Ipi)sympify)imre)sqrt)atan2)MatrixMutableDenseMatrix)together)
filldedentc                   v    e Zd ZdZd Zd Zed             Zed             Zed             Z	ed             Z
dS )	r   a  
    Base class for a Ray Transfer Matrix.

    It should be used if there is not already a more specific subclass mentioned
    in See Also.

    Parameters
    ==========

    parameters :
        A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D]))

    Examples
    ========

    >>> from sympy.physics.optics import RayTransferMatrix, ThinLens
    >>> from sympy import Symbol, Matrix

    >>> mat = RayTransferMatrix(1, 2, 3, 4)
    >>> mat
    Matrix([
    [1, 2],
    [3, 4]])

    >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]]))
    Matrix([
    [1, 2],
    [3, 4]])

    >>> mat.A
    1

    >>> f = Symbol('f')
    >>> lens = ThinLens(f)
    >>> lens
    Matrix([
    [   1, 0],
    [-1/f, 1]])

    >>> lens.C
    -1/f

    See Also
    ========

    GeometricRay, BeamParameter,
    FreeSpace, FlatRefraction, CurvedRefraction,
    FlatMirror, CurvedMirror, ThinLens

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis
    c                 |   t          |          dk    r!|d         |d         f|d         |d         ff}ntt          |          dk    r5t          |d         t                    r|d         j        dk    r	|d         }n,t	          t          dt          |          z                      t          j        | |          S )N   r            )r#   r#   z`
                Expecting 2x2 Matrix or the 4 elements of
                the Matrix but got %slen
isinstancer   shape
ValueErrorr   str__new__clsargstemps      Y/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/physics/optics/gaussopt.pyr+   zRayTransferMatrix.__new__s   s    t99>>!Wd1g&a$q'(:;DDYY!^^47F++ GMV++7DDZ ))+.t99)5 6 6 7 7 7 ~c4(((    c           	         t          |t                    r,t          t          |           t          |          z            S t          |t                    r,t          t          |           t          |          z            S t          |t                    rt          |           t          |j        fdf          z  }|d         |d         z                      d          }t	          |j        t          t          |                    t          t          |                              S t          j        | |          S )Nr"   r   r"   T)complex)z_r)r'   r   r   r	   r
   qexpandwavelenr   r   r   __mul__)selfotherr/   r6   s       r0   r9   zRayTransferMatrix.__mul__   s   e.// 	/$VD\\&--%?@@@|,, 		/tVE]] :;;;}-- 	/$<<
D'9 : ::Daa(((66A !)"Q%%%-bee__6 6 6 6 >$...r1   c                     | d         S )z
        The A parameter of the Matrix.

        Examples
        ========

        >>> from sympy.physics.optics import RayTransferMatrix
        >>> mat = RayTransferMatrix(1, 2, 3, 4)
        >>> mat.A
        1
        )r   r    r:   s    r0   AzRayTransferMatrix.A        Dzr1   c                     | d         S )z
        The B parameter of the Matrix.

        Examples
        ========

        >>> from sympy.physics.optics import RayTransferMatrix
        >>> mat = RayTransferMatrix(1, 2, 3, 4)
        >>> mat.B
        2
        )r   r"   r=   r>   s    r0   BzRayTransferMatrix.B   r@   r1   c                     | d         S )z
        The C parameter of the Matrix.

        Examples
        ========

        >>> from sympy.physics.optics import RayTransferMatrix
        >>> mat = RayTransferMatrix(1, 2, 3, 4)
        >>> mat.C
        3
        )r"   r   r=   r>   s    r0   CzRayTransferMatrix.C   r@   r1   c                     | d         S )z
        The D parameter of the Matrix.

        Examples
        ========

        >>> from sympy.physics.optics import RayTransferMatrix
        >>> mat = RayTransferMatrix(1, 2, 3, 4)
        >>> mat.D
        4
        )r"   r"   r=   r>   s    r0   DzRayTransferMatrix.D   r@   r1   N)__name__
__module____qualname____doc__r+   r9   propertyr?   rB   rD   rF   r=   r1   r0   r   r   ;   s        5 5n) ) )/ / /   X   X   X   X  r1   r   c                       e Zd ZdZd ZdS )r   aQ  
    Ray Transfer Matrix for free space.

    Parameters
    ==========

    distance

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import FreeSpace
    >>> from sympy import symbols
    >>> d = symbols('d')
    >>> FreeSpace(d)
    Matrix([
    [1, d],
    [0, 1]])
    c                 >    t                               | d|dd          S Nr"   r   r   r+   )r-   ds     r0   r+   zFreeSpace.__new__        ((aAq999r1   NrG   rH   rI   rJ   r+   r=   r1   r0   r   r      s-         0: : : : :r1   r   c                       e Zd ZdZd ZdS )r   a  
    Ray Transfer Matrix for refraction.

    Parameters
    ==========

    n1 :
        Refractive index of one medium.
    n2 :
        Refractive index of other medium.

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import FlatRefraction
    >>> from sympy import symbols
    >>> n1, n2 = symbols('n1 n2')
    >>> FlatRefraction(n1, n2)
    Matrix([
    [1,     0],
    [0, n1/n2]])
    c                 x    t          t          ||f          \  }}t                              | ddd||z            S rN   mapr   r   r+   )r-   n1n2s      r0   r+   zFlatRefraction.__new__  s9    Wr2h''B ((aAr"u===r1   NrR   r=   r1   r0   r   r      s-         6> > > > >r1   r   c                       e Zd ZdZd ZdS )r   aB  
    Ray Transfer Matrix for refraction on curved interface.

    Parameters
    ==========

    R :
        Radius of curvature (positive for concave).
    n1 :
        Refractive index of one medium.
    n2 :
        Refractive index of other medium.

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import CurvedRefraction
    >>> from sympy import symbols
    >>> R, n1, n2 = symbols('R n1 n2')
    >>> CurvedRefraction(R, n1, n2)
    Matrix([
    [               1,     0],
    [(n1 - n2)/(R*n2), n1/n2]])
    c                     t          t          |||f          \  }}}t                              | dd||z
  |z  |z  ||z            S rN   rU   )r-   RrW   rX   s       r0   r+   zCurvedRefraction.__new__(  sI    !R--	2r ((aR"WaKNBrEJJJr1   NrR   r=   r1   r0   r   r   
  s2         :K K K K Kr1   r   c                       e Zd ZdZd ZdS )r   z
    Ray Transfer Matrix for reflection.

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import FlatMirror
    >>> FlatMirror()
    Matrix([
    [1, 0],
    [0, 1]])
    c                 >    t                               | dddd          S rN   rO   )r-   s    r0   r+   zFlatMirror.__new__?  rQ   r1   NrR   r=   r1   r0   r   r   -  s-         ": : : : :r1   r   c                       e Zd ZdZd ZdS )r   a  
    Ray Transfer Matrix for reflection from curved surface.

    Parameters
    ==========

    R : radius of curvature (positive for concave)

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import CurvedMirror
    >>> from sympy import symbols
    >>> R = symbols('R')
    >>> CurvedMirror(R)
    Matrix([
    [   1, 0],
    [-2/R, 1]])
    c                 b    t          |          }t                              | ddd|z  d          S )Nr"   r   r   r   r+   )r-   r[   s     r0   r+   zCurvedMirror.__new__\  -    AJJ ((aBqD!<<<r1   NrR   r=   r1   r0   r   r   C  s-         0= = = = =r1   r   c                       e Zd ZdZd ZdS )r   am  
    Ray Transfer Matrix for a thin lens.

    Parameters
    ==========

    f :
        The focal distance.

    See Also
    ========

    RayTransferMatrix

    Examples
    ========

    >>> from sympy.physics.optics import ThinLens
    >>> from sympy import symbols
    >>> f = symbols('f')
    >>> ThinLens(f)
    Matrix([
    [   1, 0],
    [-1/f, 1]])
    c                 b    t          |          }t                              | ddd|z  d          S )Nr"   r   ra   )r-   fs     r0   r+   zThinLens.__new__{  rb   r1   NrR   r=   r1   r0   r   r   a  s-         2= = = = =r1   r   c                   D    e Zd ZdZd Zed             Zed             ZdS )r	   a  
    Representation for a geometric ray in the Ray Transfer Matrix formalism.

    Parameters
    ==========

    h : height, and
    angle : angle, or
    matrix : a 2x1 matrix (Matrix(2, 1, [height, angle]))

    Examples
    ========

    >>> from sympy.physics.optics import GeometricRay, FreeSpace
    >>> from sympy import symbols, Matrix
    >>> d, h, angle = symbols('d, h, angle')

    >>> GeometricRay(h, angle)
    Matrix([
    [    h],
    [angle]])

    >>> FreeSpace(d)*GeometricRay(h, angle)
    Matrix([
    [angle*d + h],
    [      angle]])

    >>> GeometricRay( Matrix( ((h,), (angle,)) ) )
    Matrix([
    [    h],
    [angle]])

    See Also
    ========

    RayTransferMatrix

    c                 `   t          |          dk    r5t          |d         t                    r|d         j        dk    r	|d         }nRt          |          dk    r|d         f|d         ff}n,t	          t          dt          |          z                      t          j        | |          S )Nr"   r   )r#   r"   r#   z`
                Expecting 2x1 Matrix or the 2 elements of
                the Matrix but got %sr%   r,   s      r0   r+   zGeometricRay.__new__  s    t99>>ja&99>GMV++7DDYY!^^!WJa
+DDZ ))+.t99)5 6 6 7 7 7 ~c4(((r1   c                     | d         S )a0  
        The distance from the optical axis.

        Examples
        ========

        >>> from sympy.physics.optics import GeometricRay
        >>> from sympy import symbols
        >>> h, angle = symbols('h, angle')
        >>> gRay = GeometricRay(h, angle)
        >>> gRay.height
        h
        r   r=   r>   s    r0   heightzGeometricRay.height       Awr1   c                     | d         S )a0  
        The angle with the optical axis.

        Examples
        ========

        >>> from sympy.physics.optics import GeometricRay
        >>> from sympy import symbols
        >>> h, angle = symbols('h, angle')
        >>> gRay = GeometricRay(h, angle)
        >>> gRay.angle
        angle
        r"   r=   r>   s    r0   anglezGeometricRay.angle  rk   r1   N)rG   rH   rI   rJ   r+   rK   rj   rm   r=   r1   r0   r	   r	     sd        % %N
) 
) 
)   X    X  r1   r	   c                      e Zd ZdZddZed             Zed             Zed             Zed             Z	ed	             Z
ed
             Zed             Zed             Zed             Zed             Zed             ZdS )r
   a  
    Representation for a gaussian ray in the Ray Transfer Matrix formalism.

    Parameters
    ==========

    wavelen : the wavelength,
    z : the distance to waist, and
    w : the waist, or
    z_r : the rayleigh range.
    n : the refractive index of medium.

    Examples
    ========

    >>> from sympy.physics.optics import BeamParameter
    >>> p = BeamParameter(530e-9, 1, w=1e-3)
    >>> p.q
    1 + 1.88679245283019*I*pi

    >>> p.q.n()
    1.0 + 5.92753330865999*I
    >>> p.w_0.n()
    0.00100000000000000
    >>> p.z_r.n()
    5.92753330865999

    >>> from sympy.physics.optics import FreeSpace
    >>> fs = FreeSpace(10)
    >>> p1 = fs*p
    >>> p.w.n()
    0.00101413072159615
    >>> p1.w.n()
    0.00210803120913829

    See Also
    ========

    RayTransferMatrix

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter
    .. [2] https://en.wikipedia.org/wiki/Gaussian_beam
    Nr"   c                     t          |          }t          |          }t          |          }||t          |          }n6|!|t          t          |          ||          }n||t          d          t          j        | ||||          S )NzMust specify one of w and z_r.)r   r   r)   r   r+   )r-   r8   zr5   wns         r0   r+   zBeamParameter.__new__  s    '""AJJAJJ?qy#,,CC]s{ Wa88CC[QY=>>>|C!S!444r1   c                     | j         d         S )Nr   r.   r>   s    r0   r8   zBeamParameter.wavelen       y|r1   c                     | j         d         S )Nr"   rt   r>   s    r0   rp   zBeamParameter.z$  ru   r1   c                     | j         d         S )Nr#   rt   r>   s    r0   r5   zBeamParameter.z_r(  ru   r1   c                     | j         d         S )Nr$   rt   r>   s    r0   rr   zBeamParameter.n,  ru   r1   c                 0    | j         t          | j        z  z   S )a   
        The complex parameter representing the beam.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.q
        1 + 1.88679245283019*I*pi
        )rp   r   r5   r>   s    r0   r6   zBeamParameter.q0  s     v$(
""r1   c                 <    | j         d| j        | j         z  dz  z   z  S )a  
        The radius of curvature of the phase front.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.radius
        1 + 3.55998576005696*pi**2
        r"   r#   )rp   r5   r>   s    r0   radiuszBeamParameter.radius?  s#     vqDHTVOa//00r1   c                 V    | j         t          d| j        | j        z  dz  z             z  S )a  
        The radius of the beam w(z), at any position z along the beam.
        The beam radius at `1/e^2` intensity (axial value).

        See Also
        ========

        w_0 :
            The minimal radius of beam.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.w
        0.001*sqrt(0.2809/pi**2 + 1)
        r"   r#   )w_0r   rp   r5   r>   s    r0   rq   zBeamParameter.wN  s+    ( xQ$&/A!556666r1   c                 Z    t          | j        t          | j        z  z  | j        z            S )ar  
         The minimal radius of beam at `1/e^2` intensity (peak value).

        See Also
        ========

        w : the beam radius at `1/e^2` intensity (axial value).

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.w_0
        0.00100000000000000
        )r   r5   r   rr   r8   r>   s    r0   r}   zBeamParameter.w_0d  s&    $ DHbi(5666r1   c                 0    | j         t          z  | j        z  S )z
        Half of the total angular spread.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.divergence
        0.00053/pi
        )r8   r   r}   r>   s    r0   
divergencezBeamParameter.divergencex  s     |Btx''r1   c                 6    t          | j        | j                  S )z
        The Gouy phase.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.gouy
        atan(0.53/pi)
        )r   rp   r5   r>   s    r0   gouyzBeamParameter.gouy  s     TVTX&&&r1   c                 &    d| j         z  t          z  S )a  
        The minimal waist for which the gauss beam approximation is valid.

        Explanation
        ===========

        The gauss beam is a solution to the paraxial equation. For curvatures
        that are too great it is not a valid approximation.

        Examples
        ========

        >>> from sympy.physics.optics import BeamParameter
        >>> p = BeamParameter(530e-9, 1, w=1e-3)
        >>> p.waist_approximation_limit
        1.06e-6/pi
        r#   )r8   r   r>   s    r0   waist_approximation_limitz'BeamParameter.waist_approximation_limit  s    & ~b  r1   )NNr"   )rG   rH   rI   rJ   r+   rK   r8   rp   r5   rr   r6   r{   rq   r}   r   r   r   r=   r1   r0   r
   r
     s\       - -d5 5 5 5   X   X   X   X # # X# 1 1 X1 7 7 X7* 7 7 X7& ( ( X( ' ' X' ! ! X! ! !r1   r
   r"   c                 \    t          t          | |f          \  } }| dz  |z  t          z  |z  S )a^  
    Calculate the rayleigh range from the waist of a gaussian beam.

    See Also
    ========

    rayleigh2waist, BeamParameter

    Examples
    ========

    >>> from sympy.physics.optics import waist2rayleigh
    >>> from sympy import symbols
    >>> w, wavelen = symbols('w wavelen')
    >>> waist2rayleigh(w, wavelen)
    pi*w**2/wavelen
    r#   )rV   r   r   )rq   r8   rr   s      r0   r   r     s2    $ Wq'l++JAwa46"9Wr1   c                 j    t          t          | |f          \  } }t          | t          z  |z            S )aj  Calculate the waist from the rayleigh range of a gaussian beam.

    See Also
    ========

    waist2rayleigh, BeamParameter

    Examples
    ========

    >>> from sympy.physics.optics import rayleigh2waist
    >>> from sympy import symbols
    >>> z_r, wavelen = symbols('z_r wavelen')
    >>> rayleigh2waist(z_r, wavelen)
    sqrt(wavelen*z_r)/sqrt(pi)
    )rV   r   r   r   )r5   r8   s     r0   r   r     s1    " wg//LCBwr1   c                 ~    t          t          | |f          \  } }| j        s|j        r|j        r| n|S | |z  | |z   z  S )a  
    Conjugation relation for geometrical beams under paraxial conditions.

    Explanation
    ===========

    Takes the distances to the optical element and returns the needed
    focal distance.

    See Also
    ========

    geometric_conj_af, geometric_conj_bf

    Examples
    ========

    >>> from sympy.physics.optics import geometric_conj_ab
    >>> from sympy import symbols
    >>> a, b = symbols('a b')
    >>> geometric_conj_ab(a, b)
    a*b/(a + b)
    )rV   r   is_infinite)abs     r0   r   r     sQ    0 wADAq}  M(qqq(sAE{r1   c                 Z    t          t          | |f          \  } }t          | |            S )a  
    Conjugation relation for geometrical beams under paraxial conditions.

    Explanation
    ===========

    Takes the object distance (for geometric_conj_af) or the image distance
    (for geometric_conj_bf) to the optical element and the focal distance.
    Then it returns the other distance needed for conjugation.

    See Also
    ========

    geometric_conj_ab

    Examples
    ========

    >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf
    >>> from sympy import symbols
    >>> a, b, f = symbols('a b f')
    >>> geometric_conj_af(a, f)
    a*f/(a - f)
    >>> geometric_conj_bf(b, f)
    b*f/(b - f)
    )rV   r   r   )r   rf   s     r0   r   r     s0    6 wADAqa!$$$$r1   c                     t          t          | ||f          \  } }}dd| |dz  | |z
  z  z   z  d|z  z   z  }dt          d| |z  dz  z
  ||z  dz  z             z  }|d| |z  dz  z
  ||z  dz  z   z  }|||fS )a  
    Conjugation relation for gaussian beams.

    Parameters
    ==========

    s_in :
        The distance to optical element from the waist.
    z_r_in :
        The rayleigh range of the incident beam.
    f :
        The focal length of the optical element.

    Returns
    =======

    a tuple containing (s_out, z_r_out, m)
    s_out :
        The distance between the new waist and the optical element.
    z_r_out :
        The rayleigh range of the emergent beam.
    m :
        The ration between the new and the old waists.

    Examples
    ========

    >>> from sympy.physics.optics import gaussian_conj
    >>> from sympy import symbols
    >>> s_in, z_r_in, f = symbols('s_in z_r_in f')

    >>> gaussian_conj(s_in, z_r_in, f)[0]
    1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f)

    >>> gaussian_conj(s_in, z_r_in, f)[1]
    z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2)

    >>> gaussian_conj(s_in, z_r_in, f)[2]
    1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2)
    r"   re   r#   )rV   r   r   )s_inz_r_inrf   s_outmz_r_outs         r0   r   r     s    R 'D&!#455OD&!"dVQYq112QqS8:E	$T!VaKF1Hq=0
1
11Ad1fq[VAXM9:G7Ar1   c                    t          t          | ||f          \  } }}||z  }t          ||           }t          |          dk    rt	          d          d|v rt          t          d                    d|v rTt          |d                   }|dt          d|dz  z  |dz  |dz  z  z
            z
  z  }t          |||          d         }n<d|v rt          t          d                    t	          t          d	                    |||fS )
a  
    Find the optical setup conjugating the object/image waists.

    Parameters
    ==========

    wavelen :
        The wavelength of the beam.
    waist_in and waist_out :
        The waists to be conjugated.
    f :
        The focal distance of the element used in the conjugation.

    Returns
    =======

    a tuple containing (s_in, s_out, f)
    s_in :
        The distance before the optical element.
    s_out :
        The distance after the optical element.
    f :
        The focal distance of the optical element.

    Examples
    ========

    >>> from sympy.physics.optics import conjugate_gauss_beams
    >>> from sympy import symbols, factor
    >>> l, w_i, w_o, f = symbols('l w_i w_o f')

    >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0]
    f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))

    >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1])
    f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 -
              pi**2*w_i**4/(f**2*l**2)))/w_i**2

    >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2]
    f
    r"   z,The function expects only one named argumentdistzD
            Currently only focal length is supported as a parameterrf   r#   r   r   zG
            The functions expects the focal length as a named argument)	rV   r   r   r&   r)   NotImplementedErrorr   r   r   )	r8   waist_in	waist_outkwargsr   rp   rf   r   r   s	            r0   r   r   K  s]   V $'w(I0N#O#O GXyHAx))A
6{{aGHHH	6		!* .G #H #H I I 	I	F3K  AQq!tVad1a4i/0001dAq))!,	6		!* .G #H #H I I 	I  %J K K L L 	L%r1   Nr3   )'rJ   __all__sympy.core.exprr   sympy.core.numbersr   r   sympy.core.sympifyr   $sympy.functions.elementary.complexesr   r   (sympy.functions.elementary.miscellaneousr   (sympy.functions.elementary.trigonometricr   sympy.matrices.denser   r   sympy.polys.rationaltoolsr   sympy.utilities.miscr   r   r   r   r   r   r   r   r	   r
   r   r   r   r   r   r   r   r=   r1   r0   <module>r      s   .  ( !           & & & & & & & & & & & & & & 9 9 9 9 9 9 9 9 9 9 9 9 9 9 : : : : : : ; ; ; ; ; ; ; ; . . . . . . + + + + + +N N N N N* N N Nb: : : : :! : : ::> > > > >& > > >B K  K  K  K  K(  K  K  KF: : : : :" : : :,= = = = =$ = = =<= = = = =  = = =FT T T T T% T T TvJ! J! J! J! J!D J! J! J!b   ,     *  >% % %< & - - -`= = = = =r1   