
    ga                     h    d dl mZ d dlmZmZ d dlmZ d dlmZ d dl	m
Z
 dgZ G d de          ZdS )	    )S)crossdot)BodyBase)inertia_of_point_mass)sympy_deprecation_warningParticlec                   P     e Zd ZdZej        Zd	 fd	Zd Zd Z	d Z
d Zd Z xZS )
r	   an  A particle.

    Explanation
    ===========

    Particles have a non-zero mass and lack spatial extension; they take up no
    space.

    Values need to be supplied on initialization, but can be changed later.

    Parameters
    ==========

    name : str
        Name of particle
    point : Point
        A physics/mechanics Point which represents the position, velocity, and
        acceleration of this Particle
    mass : Sympifyable
        A SymPy expression representing the Particle's mass
    potential_energy : Sympifyable
        The potential energy of the Particle.

    Examples
    ========

    >>> from sympy.physics.mechanics import Particle, Point
    >>> from sympy import Symbol
    >>> po = Point('po')
    >>> m = Symbol('m')
    >>> pa = Particle('pa', po, m)
    >>> # Or you could change these later
    >>> pa.mass = m
    >>> pa.point = po

    Nc                 N    t                                          |||           d S )N)super__init__)selfnamepointmass	__class__s       \/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/physics/mechanics/particle.pyr   zParticle.__init__1   s%    ud+++++    c                 F    | j         | j                            |          z  S )a  Linear momentum of the particle.

        Explanation
        ===========

        The linear momentum L, of a particle P, with respect to frame N is
        given by:

        L = m * v

        where m is the mass of the particle, and v is the velocity of the
        particle in the frame N.

        Parameters
        ==========

        frame : ReferenceFrame
            The frame in which linear momentum is desired.

        Examples
        ========

        >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
        >>> from sympy.physics.mechanics import dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> m, v = dynamicsymbols('m v')
        >>> N = ReferenceFrame('N')
        >>> P = Point('P')
        >>> A = Particle('A', P, m)
        >>> P.set_vel(N, v * N.x)
        >>> A.linear_momentum(N)
        m*v*N.x

        )r   r   velr   frames     r   linear_momentumzParticle.linear_momentum4   s     J y4:>>%0000r   c                     t          | j                            |          | j        | j                            |          z            S )a  Angular momentum of the particle about the point.

        Explanation
        ===========

        The angular momentum H, about some point O of a particle, P, is given
        by:

        ``H = cross(r, m * v)``

        where r is the position vector from point O to the particle P, m is
        the mass of the particle, and v is the velocity of the particle in
        the inertial frame, N.

        Parameters
        ==========

        point : Point
            The point about which angular momentum of the particle is desired.

        frame : ReferenceFrame
            The frame in which angular momentum is desired.

        Examples
        ========

        >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
        >>> from sympy.physics.mechanics import dynamicsymbols
        >>> from sympy.physics.vector import init_vprinting
        >>> init_vprinting(pretty_print=False)
        >>> m, v, r = dynamicsymbols('m v r')
        >>> N = ReferenceFrame('N')
        >>> O = Point('O')
        >>> A = O.locatenew('A', r * N.x)
        >>> P = Particle('P', A, m)
        >>> P.point.set_vel(N, v * N.y)
        >>> P.angular_momentum(O, N)
        m*r*v*N.z

        )r   r   pos_fromr   r   r   r   r   s      r   angular_momentumzParticle.angular_momentum[   sA    T TZ((//Y!6!668 8 	8r   c                     t           j        | j        z  t          | j                            |          | j                            |                    z  S )a  Kinetic energy of the particle.

        Explanation
        ===========

        The kinetic energy, T, of a particle, P, is given by:

        ``T = 1/2 (dot(m * v, v))``

        where m is the mass of particle P, and v is the velocity of the
        particle in the supplied ReferenceFrame.

        Parameters
        ==========

        frame : ReferenceFrame
            The Particle's velocity is typically defined with respect to
            an inertial frame but any relevant frame in which the velocity is
            known can be supplied.

        Examples
        ========

        >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame
        >>> from sympy import symbols
        >>> m, v, r = symbols('m v r')
        >>> N = ReferenceFrame('N')
        >>> O = Point('O')
        >>> P = Particle('P', O, m)
        >>> P.point.set_vel(N, v * N.y)
        >>> P.kinetic_energy(N)
        m*v**2/2

        )r   Halfr   r   r   r   r   s     r   kinetic_energyzParticle.kinetic_energy   sH    H v	!C
u(=(=(,
u(=(=%? %? ? 	?r   c                 8    t          ddd           || _        d S )Nz
The sympy.physics.mechanics.Particle.set_potential_energy()
method is deprecated. Instead use

    P.potential_energy = scalar
            z1.5zdeprecated-set-potential-energy)deprecated_since_versionactive_deprecations_target)r   potential_energy)r   scalars     r   set_potential_energyzParticle.set_potential_energy   s6    ! "'#D		
 		
 		
 		
 !'r   c                 ^    t          | j        | j                            |          |          S )a  Returns an inertia dyadic of the particle with respect to another
        point and frame.

        Parameters
        ==========

        point : sympy.physics.vector.Point
            The point to express the inertia dyadic about.
        frame : sympy.physics.vector.ReferenceFrame
            The reference frame used to construct the dyadic.

        Returns
        =======

        inertia : sympy.physics.vector.Dyadic
            The inertia dyadic of the particle expressed about the provided
            point and frame.

        )r   r   r   r   r   s      r   parallel_axiszParticle.parallel_axis   s/    ( %TY
0C0CE0J0J%*, , 	,r   )NN)__name__
__module____qualname____doc__r   
masscenterr   r   r   r   r    r&   r(   __classcell__)r   s   @r   r	   r	   
   s        # #H E, , , , , ,%1 %1 %1N+8 +8 +8Z%? %? %?N' ' ', , , , , , ,r   N)sympyr   sympy.physics.vectorr   r   !sympy.physics.mechanics.body_baser   sympy.physics.mechanics.inertiar   sympy.utilities.exceptionsr   __all__r	    r   r   <module>r6      s          + + + + + + + + 6 6 6 6 6 6 A A A A A A @ @ @ @ @ @,G, G, G, G, G,x G, G, G, G, G,r   