
    g                        d Z ddlmZmZ ddlmZ ddlmZ ddlmZ ddl	m
Z
 ddlmZ dd	lmZ dd
lmZ d Z G d d          Z e            Zd Z eddd          d             ZdedefdZd"dZd Zd#dZd Zd$dZd%dZd  Zd! ZdS )&z"
Generating and counting primes.

    )bisectbisect_leftcount)array)randint)sqrt   )isprime)
deprecated)as_intc                 >    ddl m} t           ||                     S )z Wrapping ceiling in as_int will raise an error if there was a problem
        determining whether the expression was exactly an integer or not.r   )ceiling)#sympy.functions.elementary.integersr   r   )ar   s     R/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/ntheory/generate.py_as_int_ceilingr      s,     <;;;;;''!**    c                   f    e Zd ZdZddZd ZddZd Zd Zd	 Z	dd
Z
d Zd Zd Zd Zd Zd ZdS )Sievea  A list of prime numbers, implemented as a dynamically
    growing sieve of Eratosthenes. When a lookup is requested involving
    an odd number that has not been sieved, the sieve is automatically
    extended up to that number. Implementation details limit the number of
    primes to ``2^32-1``.

    Examples
    ========

    >>> from sympy import sieve
    >>> sieve._reset() # this line for doctest only
    >>> 25 in sieve
    False
    >>> sieve._list
    array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])
    @B c                 6    d _         t          dg d           _        t          dg d           _        t          dg d           _        |dk    rt          d          | _        t           fd	 j         j         j        fD                       sJ d
S )z Initial parameters for the Sieve class.

        Parameters
        ==========

        sieve_interval (int): Amount of memory to be used

        Raises
        ======

        ValueError
            If ``sieve_interval`` is not positive.

           L)                  )r   r
   r
   r   r      i)r   r
   r#   r   r#   r   z+sieve_interval should be a positive integerc              3   H   K   | ]}t          |          j        k    V  d S N)len_n).0r"   selfs     r   	<genexpr>z!Sieve.__init__.<locals>.<genexpr>C   s0      UU3q66TW$UUUUUUr   N)r'   _array_list_tlist_mlist
ValueErrorsieve_intervalall)r)   r0   s   ` r   __init__zSieve.__init__-   s     C!5!5!566
S"4"4"455S"7"7"788QJKKK,UUUUtz4;.TUUUUUUUUUUr   c                    ddt          | j                  | j        d         | j        d         | j        d         | j        d         | j        d         dt          | j                  | j        d         | j        d         | j        d         | j        d         | j        d         d	t          | j                  | j        d         | j        d         | j        d         | j        d         | j        d         fz  S )
Nzs<%s sieve (%i): %i, %i, %i, ... %i, %i
%s sieve (%i): %i, %i, %i, ... %i, %i
%s sieve (%i): %i, %i, %i, ... %i, %i>primer   r
   r   r#   totientmobius)r&   r,   r-   r.   )r)   s    r   __repr__zSieve.__repr__E   s    6 c$*ooA
1tz!}BBDK((QQQR$+b/s4;''QQQR$+b/	:CC 	Cr   Nc                     t          d |||fD                       rdx}x}}|r| j        d| j                 | _        |r| j        d| j                 | _        |r| j        d| j                 | _        dS dS )z]Reset all caches (default). To reset one or more set the
            desired keyword to True.c              3      K   | ]}|d u V  	d S r%    )r(   r"   s     r   r*   zSieve._reset.<locals>.<genexpr>V   s&      ;;QqDy;;;;;;r   TN)r1   r,   r'   r-   r.   )r)   r4   r6   r7   s       r   _resetzSieve._resetS   s     ;;5'6":;;;;; 	,'++E+Gf 	.HTWH-DJ 	0+htwh/DK 	0+htwh/DKKK	0 	0r   c           
      R   t          |          }| j        d         dz   }||k     rdS |dz  }||k    r?| xj        t          d|                     ||                    z  c_        ||dz  }}||k    ?| xj        t          d|                     ||dz                       z  c_        dS )zGrow the sieve to cover all primes <= n.

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend(30)
        >>> sieve[10] == 29
        True
        r#   r
   Nr   r   )intr,   r+   _primerange)r)   nnumnum2s       r   extendzSieve.extend_   s     FF jnq s77FAvaiiJJ&d&6&6sD&A&ABBBJJdAgC aii 	

fS$"2"23A">">???



r   c           
   #     K   |dz  r|dz  }||k     rt          | j        ||z
  dz            }dg|z  }| j        dt          | j        t	          |d|z  z   dz                                D ](}t          |dz   |z    dz  |z  ||          D ]}d||<   )t          |          D ]\  }}|r|d|z  z   dz   V  |d|z  z  }||k     dS dS )a?   Generate all prime numbers in the range (a, b).

        Parameters
        ==========

        a, b : positive integers assuming the following conditions
                * a is an even number
                * 2 < self._list[-1] < a < b < nextprime(self._list[-1])**2

        Yields
        ======

        p (int): prime numbers such that ``a < p < b``

        Examples
        ========

        >>> from sympy.ntheory.generate import Sieve
        >>> s = Sieve()
        >>> s._list[-1]
        13
        >>> list(s._primerange(18, 31))
        [19, 23, 29]

        r   r
   TFN)minr0   r,   r   r	   range	enumerate)r)   r   b
block_sizeblockptidxs           r   r?   zSieve._primerangex   s'     4 q5 	FA!eeT01q5Q,??J FZ'EZ&T!a*n:Lq:P5Q5Q"R"R RS % %!a%!) 1Q6
AFF % %A$E!HH%#E** * *Q *a#g+/)))ZA !eeeeeer   c                     t          |          }t          | j                  |k     rJ|                     t	          | j        d         dz                       t          | j                  |k     HdS dS )a  Extend to include the ith prime number.

        Parameters
        ==========

        i : integer

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve._reset() # this line for doctest only
        >>> sieve.extend_to_no(9)
        >>> sieve._list
        array('L', [2, 3, 5, 7, 11, 13, 17, 19, 23])

        Notes
        =====

        The list is extended by 50% if it is too short, so it is
        likely that it will be longer than requested.
        r#   g      ?N)r   r&   r,   rC   r>   )r)   r"   s     r   extend_to_nozSieve.extend_to_no   sh    . 1II$*oo!!KKDJrNS011222 $*oo!!!!!!r   c              #   :  K   |t          |          }d}n,t          dt          |                    }t          |          }||k    rdS |                     |           | j        t	          | j        |          t	          | j        |                   E d{V  dS )a(  Generate all prime numbers in the range [2, a) or [a, b).

        Examples
        ========

        >>> from sympy import sieve, prime

        All primes less than 19:

        >>> print([i for i in sieve.primerange(19)])
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> print([i for i in sieve.primerange(7, 19)])
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(sieve.primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        Nr   )r   maxrC   r,   r   )r)   r   rH   s      r   
primerangezSieve.primerange   s      0 9""AAAAq))**A""A66FA:k$*a88)$*a889 : 	: 	: 	: 	: 	: 	: 	: 	: 	:r   c           	   #     K   t          dt          |                    }t          |          }t          | j                  }||k    rdS ||k    r$t	          ||          D ]}| j        |         V  dS | xj        t          dt	          ||                    z  c_        t	          d|          D ]g}| j        |         }||dz
  k    rE||z   dz
  |z  |z  }t	          |||          D ]%}| j        |xx         | j        |         |z  z  cc<   &||k    r|V  ht	          ||          D ]a}| j        |         }||k    r7t	          |||          D ]%}| j        |xx         | j        |         |z  z  cc<   &||k    r| j        |         V  bdS )zGenerate all totient numbers for the range [a, b).

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.totientrange(7, 18)])
        [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16]
        r
   Nr   )rQ   r   r&   r-   rF   r+   )r)   r   rH   r@   r"   ti
startindexjs           r   totientrangezSieve.totientrange   s      ?1%%&&A66F!VV1a[[ % %k!n$$$$% % KK6#uQ{{333KK1a[[  [^Q;;"#a%!)!1A!5J":q!44 > >A$+a.A*==66HHH1a[[ ) )[^77"1a^^ > >A$+a.A*==66+a.((() )r   c              #     K   t          dt          |                    }t          |          }t          | j                  }||k    rdS ||k    r$t	          ||          D ]}| j        |         V  dS | xj        t          ddg||z
  z            z  c_        t	          d|          D ]P}| j        |         }||z   dz
  |z  |z  }t	          |||          D ]}| j        |xx         |z  cc<   ||k    r|V  Qt	          ||          D ]E}| j        |         }t	          d|z  ||          D ]}| j        |xx         |z  cc<   ||k    r|V  FdS )a  Generate all mobius numbers for the range [a, b).

        Parameters
        ==========

        a : integer
            First number in range

        b : integer
            First number outside of range

        Examples
        ========

        >>> from sympy import sieve
        >>> print([i for i in sieve.mobiusrange(7, 18)])
        [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1]
        r
   Nr"   r   r   )rQ   r   r&   r.   rF   r+   )r)   r   rH   r@   r"   mirU   rV   s           r   mobiusrangezSieve.mobiusrange  s     & ?1%%&&A66F!VV1a[[ % %k!n$$$$% % KK6#sAE{333KK1a[[  [^!eaiA-1
z1a00 ) )AKNNNb(NNNN66HHH1a[[  [^q1ua++ ) )AKNNNb(NNNN66HHH r   c                 "   t          |          }t          |          }|dk     rt          d|z            || j        d         k    r|                     |           t          | j        |          }| j        |dz
           |k    r||fS ||dz   fS )a~  Return the indices i, j of the primes that bound n.

        If n is prime then i == j.

        Although n can be an expression, if ceiling cannot convert
        it to an integer then an n error will be raised.

        Examples
        ========

        >>> from sympy import sieve
        >>> sieve.search(25)
        (9, 10)
        >>> sieve.search(23)
        (9, 9)
        r   zn should be >= 2 but got: %sr#   r
   )r   r   r/   r,   rC   r   )r)   r@   testrH   s       r   searchzSieve.search1  s    " q!!1IIq55;a?@@@tz"~KKNNN4:q!!:a!e$$a4Ka!e8Or   c                     	 t          |          }|dk    sJ n# t          t          f$ r Y dS w xY w|dz  dk    r|dk    S |                     |          \  }}||k    S )Nr   Fr   )r   r/   AssertionErrorr]   )r)   r@   r   rH   s       r   __contains__zSieve.__contains__N  sz    	q		A66666N+ 	 	 	55	q5A::6M{{1~~1Avs    //c              #   B   K   t          d          D ]}| |         V  d S )Nr
   r   )r)   r@   s     r   __iter__zSieve.__iter__Y  s4      q 	 	Aq'MMMM	 	r   c                 |   t          |t                    r_|                     |j                   |j        |j        nd}|dk     rt          d          | j        |dz
  |j        dz
  |j                 S |dk     rt          d          t          |          }|                     |           | j        |dz
           S )zReturn the nth prime numberNr   r
   zSieve indices start at 1.)	
isinstanceslicerO   stopstart
IndexErrorr,   stepr   )r)   r@   rg   s      r   __getitem__zSieve.__getitem__]  s    a 	%af%%%  !w2AGGEqyy !!<===:eai
169::1uu !!<===q		Aa   :a!e$$r   )r   )NNNr%   )__name__
__module____qualname____doc__r2   r8   r<   rC   r?   rO   rR   rW   rZ   r]   r`   rb   rj   r;   r   r   r   r      s         $V V V V0C C C
0 
0 
0 
0@ @ @2'  '  ' R3 3 36": ": ": ":H#) #) #)J* * *X  :	 	 	  % % % % %r   r   c           	         t          |           }|dk     rt          d          |t          t          j                  k    rt          |         S ddlm} ddlm} d}t          | ||           | ||                    z   z            }||k     r%||z   dz	  } ||          |k    r|}n|dz   }||k     %t          |dz
            }||k     rt          |          r|dz  }|dz  }||k     |dz
  S )aK   Return the nth prime, with the primes indexed as prime(1) = 2,
        prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$.

        Logarithmic integral of $x$ is a pretty nice approximation for number of
        primes $\le x$, i.e.
        li(x) ~ pi(x)
        In fact, for the numbers we are concerned about( x<1e11 ),
        li(x) - pi(x) < 50000

        Also,
        li(x) > pi(x) can be safely assumed for the numbers which
        can be evaluated by this function.

        Here, we find the least integer m such that li(m) > n using binary search.
        Now pi(m-1) < li(m-1) <= n,

        We find pi(m - 1) using primepi function.

        Starting from m, we have to find n - pi(m-1) more primes.

        For the inputs this implementation can handle, we will have to test
        primality for at max about 10**5 numbers, to get our answer.

        Examples
        ========

        >>> from sympy import prime
        >>> prime(10)
        29
        >>> prime(1)
        2
        >>> prime(100000)
        1299709

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29
        .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number
        .. [3] https://en.wikipedia.org/wiki/Skewes%27_number
    r
   z-nth must be a positive integer; prime(1) == 2r   loglir   )r   r/   r&   siever,   &sympy.functions.elementary.exponentialrq   'sympy.functions.special.error_functionsrs   r>   _primepir   )nthr@   rq   rs   r   rH   midn_primess           r   r4   r4   v  s2   b 	sA1uuHIIICQx::::::::::::	A 	Ass1vvCCFF#$%%A
a%%1ul2c77Q;;AAaA a%% AH
Q,,1:: 	MH	Q Q,, q5Lr   zgThe `sympy.ntheory.generate.primepi` has been moved to `sympy.functions.combinatorial.numbers.primepi`.z1.13z%deprecated-ntheory-symbolic-functions)deprecated_since_versionactive_deprecations_targetc                 $    ddl m}  ||           S )a
   Represents the prime counting function pi(n) = the number
        of prime numbers less than or equal to n.

        .. deprecated:: 1.13

            The ``primepi`` function is deprecated. Use :class:`sympy.functions.combinatorial.numbers.primepi`
            instead. See its documentation for more information. See
            :ref:`deprecated-ntheory-symbolic-functions` for details.

        Algorithm Description:

        In sieve method, we remove all multiples of prime p
        except p itself.

        Let phi(i,j) be the number of integers 2 <= k <= i
        which remain after sieving from primes less than
        or equal to j.
        Clearly, pi(n) = phi(n, sqrt(n))

        If j is not a prime,
        phi(i,j) = phi(i, j - 1)

        if j is a prime,
        We remove all numbers(except j) whose
        smallest prime factor is j.

        Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
        Now, after sieving from primes $\le j - 1$,
        a must remain
        (because x, and hence a has no prime factor $\le j - 1$)
        Clearly, there are phi(i / j, j - 1) such a
        which remain on sieving from primes $\le j - 1$

        Now, if a is a prime less than equal to j - 1,
        $x= j \times a$ has smallest prime factor = a, and
        has already been removed(by sieving from a).
        So, we do not need to remove it again.
        (Note: there will be pi(j - 1) such x)

        Thus, number of x, that will be removed are:
        phi(i / j, j - 1) - phi(j - 1, j - 1)
        (Note that pi(j - 1) = phi(j - 1, j - 1))

        $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)

        So,following recursion is used and implemented as dp:

        phi(a, b) = phi(a, b - 1), if b is not a prime
        phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime

        Clearly a is always of the form floor(n / k),
        which can take at most $2\sqrt{n}$ values.
        Two arrays arr1,arr2 are maintained
        arr1[i] = phi(i, j),
        arr2[i] = phi(n // i, j)

        Finally the answer is arr2[1]

        Examples
        ========

        >>> from sympy import primepi, prime, prevprime, isprime
        >>> primepi(25)
        9

        So there are 9 primes less than or equal to 25. Is 25 prime?

        >>> isprime(25)
        False

        It is not. So the first prime less than 25 must be the
        9th prime:

        >>> prevprime(25) == prime(9)
        True

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
    r   )primepi)%sympy.functions.combinatorial.numbersr~   )r@   func_primepis     r   r~   r~     s&    p NMMMMM<??r   r@   returnc           	         | dk     rdS | t           j        d         k    r t                               |           d         S t          |           }dg|dz   z  }dg|dz   z  }t	          d|dz             D ]}|dz
  ||<   | |z  dz
  ||<   t	          d|dz             D ]}||         ||dz
           k    r||dz
           }t	          dt          | ||z  z  |          dz             D ]C}||z  }||k    r||xx         ||         |z
  z  cc<   '||xx         || |z           |z
  z  cc<   Dt          |||z  dz
            }t	          ||d          D ]}||xx         |||z           |z
  z  cc<   |d         S )a   Represents the prime counting function pi(n) = the number
    of prime numbers less than or equal to n.

    Explanation
    ===========

    In sieve method, we remove all multiples of prime p
    except p itself.

    Let phi(i,j) be the number of integers 2 <= k <= i
    which remain after sieving from primes less than
    or equal to j.
    Clearly, pi(n) = phi(n, sqrt(n))

    If j is not a prime,
    phi(i,j) = phi(i, j - 1)

    if j is a prime,
    We remove all numbers(except j) whose
    smallest prime factor is j.

    Let $x= j \times a$ be such a number, where $2 \le a \le i / j$
    Now, after sieving from primes $\le j - 1$,
    a must remain
    (because x, and hence a has no prime factor $\le j - 1$)
    Clearly, there are phi(i / j, j - 1) such a
    which remain on sieving from primes $\le j - 1$

    Now, if a is a prime less than equal to j - 1,
    $x= j \times a$ has smallest prime factor = a, and
    has already been removed(by sieving from a).
    So, we do not need to remove it again.
    (Note: there will be pi(j - 1) such x)

    Thus, number of x, that will be removed are:
    phi(i / j, j - 1) - phi(j - 1, j - 1)
    (Note that pi(j - 1) = phi(j - 1, j - 1))

    $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1)

    So,following recursion is used and implemented as dp:

    phi(a, b) = phi(a, b - 1), if b is not a prime
    phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime

    Clearly a is always of the form floor(n / k),
    which can take at most $2\sqrt{n}$ values.
    Two arrays arr1,arr2 are maintained
    arr1[i] = phi(i, j),
    arr2[i] = phi(n // i, j)

    Finally the answer is arr2[1]

    Parameters
    ==========

    n : int

    r   r   r#   r
   )rt   r,   r]   r	   rF   rE   )	r@   limarr1arr2r"   rK   rV   stlim2s	            r   rw   rw     s   x 	1uuqEKO||Aq!!
q''C3#'?D3#'?D1cAg  a%Qq&1*Q1cAg ( ( 7d1q5k!!QKq#aAElC001455 	- 	-AQBSyyQ48a<'Q4R=1,,3A	""sD"%% 	( 	(AGGGtAF|a''GGGG	(7Nr   c                 .   t          |           } t          |          }|dk    rt          d          | dk     rd} |dz  }| t          j        d         k    rt                              |           \  }}||z   dz
  t          t          j                  k     rt          j        ||z   dz
           S t          t          j        d         ||z   t          t          j                  z
            S d|k     r#t          |          D ]}t          |           } | S d| dz  z  }|| k    r| dz  } t          |           r| S | dz  } n*| |z
  d	k    r| dz  } t          |           r| S | dz  } n|d	z   } 	 t          |           r| S | dz  } t          |           r| S | dz  } -)
aU   Return the ith prime greater than n.

        Parameters
        ==========

        n : integer
        ith : positive integer

        Returns
        =======

        int : Return the ith prime greater than n

        Raises
        ======

        ValueError
            If ``ith <= 0``.
            If ``n`` or ``ith`` is not an integer.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import nextprime
        >>> [(i, nextprime(i)) for i in range(10, 15)]
        [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)]
        >>> nextprime(2, ith=2) # the 2nd prime after 2
        5

        See Also
        ========

        prevprime : Return the largest prime smaller than n
        primerange : Generate all primes in a given range

    r   zith should be positiver   r
   r5   r#   r   r!   r   )
r>   r   r/   rt   r,   r]   r&   	nextprimerF   r   )r@   ithr"   l_nns         r   r   r   u  s   P 	AAsAAvv12221uu	QEKO||A1q519s5;'''';q1uqy))R!a%#ek2B2B*BCCC1uuq 	 	A!AA	
AqDB	Qww	Q1:: 	H	Q	
R1	Q1:: 	H	QF1:: 	H	Q1:: 	H	Qr   c                    t          |           } | dk     rt          d          | dk     rdddddd|          S | t          j        d         k    r@t                              |           \  }}||k    rt          |dz
           S t          |         S d	| d	z  z  }| |z
  dk    r|dz
  } t          |           r| S | d
z  } n|dz   } 	 t          |           r| S | dz  } t          |           r| S | d
z  } -)a   Return the largest prime smaller than n.

        Notes
        =====

        Potential primes are located at 6*j +/- 1. This
        property is used during searching.

        >>> from sympy import prevprime
        >>> [(i, prevprime(i)) for i in range(10, 15)]
        [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)]

        See Also
        ========

        nextprime : Return the ith prime greater than n
        primerange : Generates all primes in a given range
    r   zno preceding primes   r   r   )r   r!   r   r   r   r#   r
   r   r!   )r   r/   rt   r,   r]   r   )r@   r   ur   s       r   	prevprimer     s   & 	A1uu.///1uuqQ1--a00EKO||A1661:8O	
AqDB2v{{F1:: 	H	QF1:: 	H	Q1:: 	H	Qr   Nc              #     K   |d| }} | |k    rdS t           j        d         }||k    r#t                               | |          E d{V  dS | |k    r8t           j        t          t           j        |           d         E d{V  |dz   } n
| dz  r| dz  } t	          ||dz            }| |k     r#t                               | |          E d{V  |} || k    rdS 	 t          |           } | |k     r| V  ndS )a
   Generate a list of all prime numbers in the range [2, a),
        or [a, b).

        If the range exists in the default sieve, the values will
        be returned from there; otherwise values will be returned
        but will not modify the sieve.

        Examples
        ========

        >>> from sympy import primerange, prime

        All primes less than 19:

        >>> list(primerange(19))
        [2, 3, 5, 7, 11, 13, 17]

        All primes greater than or equal to 7 and less than 19:

        >>> list(primerange(7, 19))
        [7, 11, 13, 17]

        All primes through the 10th prime

        >>> list(primerange(prime(10) + 1))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        The Sieve method, primerange, is generally faster but it will
        occupy more memory as the sieve stores values. The default
        instance of Sieve, named sieve, can be used:

        >>> from sympy import sieve
        >>> list(sieve.primerange(1, 30))
        [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

        Notes
        =====

        Some famous conjectures about the occurrence of primes in a given
        range are [1]:

        - Twin primes: though often not, the following will give 2 primes
                    an infinite number of times:
                        primerange(6*n - 1, 6*n + 2)
        - Legendre's: the following always yields at least one prime
                        primerange(n**2, (n+1)**2+1)
        - Bertrand's (proven): there is always a prime in the range
                        primerange(n, 2*n)
        - Brocard's: there are at least four primes in the range
                        primerange(prime(n)**2, prime(n+1)**2)

        The average gap between primes is log(n) [2]; the gap between
        primes can be arbitrarily large since sequences of composite
        numbers are arbitrarily large, e.g. the numbers in the sequence
        n! + 2, n! + 3 ... n! + n are all composite.

        See Also
        ========

        prime : Return the nth prime
        nextprime : Return the ith prime greater than n
        prevprime : Return the largest prime smaller than n
        randprime : Returns a random prime in a given range
        primorial : Returns the product of primes based on condition
        Sieve.primerange : return range from already computed primes
                           or extend the sieve to contain the requested
                           range.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Prime_number
        .. [2] https://primes.utm.edu/notes/gaps.html
    Nr   r#   r
   )rt   r,   rR   r   rE   r?   r   )r   rH   largest_known_primetails       r   rR   rR     sO     V 	y!1Avv+b/##Aq)))))))));{5;::;;<<<<<<<<!#	
Q 	Qq&*++D4xx$$Q---------AvvaLLq55GGGGFr   c                     | |k    rdS t          t          | |f          \  } }t          | dz
  |          }t          |          }||k    rt	          |          }|| k     rt          d          |S )aG   Return a random prime number in the range [a, b).

        Bertrand's postulate assures that
        randprime(a, 2*a) will always succeed for a > 1.

        Note that due to implementation difficulties,
        the prime numbers chosen are not uniformly random.
        For example, there are two primes in the range [112, 128),
        ``113`` and ``127``, but ``randprime(112, 128)`` returns ``127``
        with a probability of 15/17.

        Examples
        ========

        >>> from sympy import randprime, isprime
        >>> randprime(1, 30) #doctest: +SKIP
        13
        >>> isprime(randprime(1, 30))
        True

        See Also
        ========

        primerange : Generate all primes in a given range

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate

    Nr
   z&no primes exist in the specified range)mapr>   r   r   r   r/   )r   rH   r@   rK   s       r   	randprimer   [  sy    @ 	AvvsQFDAqAqA!AAvvaLL1uuABBBHr   Tc                    |rt          |           } nt          |           } | dk     rt          d          d}|r)t          d| dz             D ]}|t	          |          z  }nt          d| dz             D ]}||z  }|S )a:  
    Returns the product of the first n primes (default) or
    the primes less than or equal to n (when ``nth=False``).

    Examples
    ========

    >>> from sympy.ntheory.generate import primorial, primerange
    >>> from sympy import factorint, Mul, primefactors, sqrt
    >>> primorial(4) # the first 4 primes are 2, 3, 5, 7
    210
    >>> primorial(4, nth=False) # primes <= 4 are 2 and 3
    6
    >>> primorial(1)
    2
    >>> primorial(1, nth=False)
    1
    >>> primorial(sqrt(101), nth=False)
    210

    One can argue that the primes are infinite since if you take
    a set of primes and multiply them together (e.g. the primorial) and
    then add or subtract 1, the result cannot be divided by any of the
    original factors, hence either 1 or more new primes must divide this
    product of primes.

    In this case, the number itself is a new prime:

    >>> factorint(primorial(4) + 1)
    {211: 1}

    In this case two new primes are the factors:

    >>> factorint(primorial(4) - 1)
    {11: 1, 19: 1}

    Here, some primes smaller and larger than the primes multiplied together
    are obtained:

    >>> p = list(primerange(10, 20))
    >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p)))
    [2, 5, 31, 149]

    See Also
    ========

    primerange : Generate all primes in a given range

    r
   zprimorial argument must be >= 1r   )r   r>   r/   rF   r4   rR   )r@   rx   rK   r"   s       r   	primorialr     s    d  1IIFF1uu:;;;	A
 q!a% 	 	AqMAA	 Aq1u%% 	 	AFAAHr   Fc              #     K   t          |pd          }dx}}| | |          }}d}|r|V  ||k    r@|r||k     r8|dz  }||k    r	|}|dz  }d}|r|V   | |          }|dz  }||k    r|2||k     8|r||k    r|rdS |dfV  dS |sRd}	|x}}t          |          D ]} | |          }||k    r! | |          } | |          }|	dz  }	||k    !||	fV  dS dS )aw  For a given iterated sequence, return a generator that gives
    the length of the iterated cycle (lambda) and the length of terms
    before the cycle begins (mu); if ``values`` is True then the
    terms of the sequence will be returned instead. The sequence is
    started with value ``x0``.

    Note: more than the first lambda + mu terms may be returned and this
    is the cost of cycle detection with Brent's method; there are, however,
    generally less terms calculated than would have been calculated if the
    proper ending point were determined, e.g. by using Floyd's method.

    >>> from sympy.ntheory.generate import cycle_length

    This will yield successive values of i <-- func(i):

        >>> def gen(func, i):
        ...     while 1:
        ...         yield i
        ...         i = func(i)
        ...

    A function is defined:

        >>> func = lambda i: (i**2 + 1) % 51

    and given a seed of 4 and the mu and lambda terms calculated:

        >>> next(cycle_length(func, 4))
        (6, 3)

    We can see what is meant by looking at the output:

        >>> iter = cycle_length(func, 4, values=True)
        >>> list(iter)
        [4, 17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]

    There are 6 repeating values after the first 3.

    If a sequence is suspected of being longer than you might wish, ``nmax``
    can be used to exit early (and mu will be returned as None):

        >>> next(cycle_length(func, 4, nmax = 4))
        (4, None)
        >>> list(cycle_length(func, 4, nmax = 4, values=True))
        [4, 17, 35, 2]

    Code modified from:
        https://en.wikipedia.org/wiki/Cycle_detection.
    r   r
   r   N)r>   rF   )
fx0nmaxvaluespowerlamtortoiseharer"   mus
             r   cycle_lengthr     s     f tyq>>D OEC2dH	A 
d

D
AHH	QC<<HQJEC 	JJJqwwq d

D
AHH  T		 	F*F 
4s 	 	A1T77DD$q{{H1T77D!GB $ 2g
 
r   c           	         t          |           }|dk     rt          d          g d}|dk    r||dz
           S dt          j        d         }}||t	          |          z
  dz
  k    rN||dz
  k     r/||z   dz	  }|t	          |          z
  dz
  |k    r|}n|}||dz
  k     /t          |          r|dz  }|S ddlm} dd	lm	} d}t          | ||           | ||                    z   z            }||k     r+||z   dz	  }| ||          z
  dz
  |k    r|}n|dz   }||k     +|t	          |          z
  dz
  }||k    rt          |          s|dz  }|dz  }||k    t          |          r|dz  }|S )
a   Return the nth composite number, with the composite numbers indexed as
        composite(1) = 4, composite(2) = 6, etc....

        Examples
        ========

        >>> from sympy import composite
        >>> composite(36)
        52
        >>> composite(1)
        4
        >>> composite(17737)
        20000

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        primepi : Return the number of primes less than or equal to n
        prime : Return the nth prime
        compositepi : Return the number of positive composite numbers less than or equal to n
    r
   z1nth must be a positive integer; composite(1) == 4)
r!   r   r   	   
                  r   r!   r#   r   rp   rr   )r   r/   rt   r,   rw   r   ru   rq   rv   rs   r>   )	rx   r@   composite_arrr   rH   ry   rq   rs   n_compositess	            r   	compositer   !  s   0 	sA1uuLMMM888MBwwQU##ek"oqAAOa!a%iiq5Q,CXc]]"Q&** !a%ii 1:: 	FA::::::::::::	AAss1vvCCFF#$%%A
a%%1ulC=1q  AAaA a%% x{{?Q&L


qzz 	AL	Q 

 qzz 	QHr   c                 Z    t          |           } | dk     rdS | t          |           z
  dz
  S )ak   Return the number of positive composite numbers less than or equal to n.
        The first positive composite is 4, i.e. compositepi(4) = 1.

        Examples
        ========

        >>> from sympy import compositepi
        >>> compositepi(25)
        15
        >>> compositepi(1000)
        831

        See Also
        ========

        sympy.ntheory.primetest.isprime : Test if n is prime
        primerange : Generate all primes in a given range
        prime : Return the nth prime
        primepi : Return the number of primes less than or equal to n
        composite : Return the nth composite number
    r!   r   r
   )r>   rw   )r@   s    r   compositepir   b  s2    , 	AA1uuqx{{?Qr   )r
   r%   )T)NF) rn   r   r   	itertoolsr   r   r+   sympy.core.randomr   sympy.external.gmpyr	   	primetestr   sympy.utilities.decoratorr   sympy.utilities.miscr   r   r   rt   r4   r~   r>   rw   r   r   rR   r   r   r   r   r   r;   r   r   <module>r      s   
 ' & & & & & & &       " ! ! ! ! ! % % % % % % $ $ $ $ $ $       0 0 0 0 0 0 ' ' ' ' ' '  V% V% V% V% V% V% V% V%r
 	I I IV  kBD D DU U	D DUpUs Us U U U UpK K K K\, , ,^f f f fR) ) )X? ? ? ?DU U U Up> > >B    r   