
    g                     h    d Z ddlmZ ddlmZ ddlmZ ddlmZ	m
ZmZ ddZddZdd	Z
dd
ddZdS )z,Functions returning normal forms of matrices    )ZZ)Poly)DomainMatrix)smith_normal_forminvariant_factorshermite_normal_formNc                     t          | dd          }|                     d           } t          j        |           }|p|}||                    |          }|S )zConvert Matrix to DomainMatrixringNc                 X    t          | t                    r|                                 n| S N)
isinstancer   as_expr)es    V/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/matrices/normalforms.py<lambda>z_to_domain.<locals>.<lambda>   s!    Z4-@-@Gaiikkka     )getattr	applyfuncr   from_Matrix
convert_to)mdomainr
   dMs       r   
_to_domainr      s_     1fd##D	GGHHA		!!	$	$B^tF]]6""Ir   c                 d    t          | |          }t          |                                          S )a  
    Return the Smith Normal Form of a matrix `m` over the ring `domain`.
    This will only work if the ring is a principal ideal domain.

    Examples
    ========

    >>> from sympy import Matrix, ZZ
    >>> from sympy.matrices.normalforms import smith_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(smith_normal_form(m, domain=ZZ))
    Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]])

    )r   _snf	to_Matrix)r   r   r   s      r   r   r      s+     
Av		B88r   c                    t          | |          t                    }t          fd|D                       }t          | d          r3| j        j        r'| j        fdt          fd|D                       }|S )a9  
    Return the tuple of abelian invariants for a matrix `m`
    (as in the Smith-Normal form)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm
    .. [2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf

    c              3   L   K   | ]}j                             |          V  d S r   )r   to_sympy).0fr   s     r   	<genexpr>z$invariant_factors.<locals>.<genexpr><   s3      ;;aBI&&q));;;;;;r   r
   c                 <    t          | j        j                  S )N)r   )r   symbolsr   )r"   Ks    r   r   z#invariant_factors.<locals>.<lambda>A   s    Q	!( C C C r   c              3   .   K   | ]} |          V  d S r    )r!   r"   to_polys     r   r#   z$invariant_factors.<locals>.<genexpr>B   s+      881GGAJJ888888r   )r   _invftuplehasattrr
   is_PolynomialRing)r   r   factorsr&   r   r)   s      @@@r   r   r   .   s     
Av		BBiiG;;;;7;;;;;Gq& 96# 	9ACCCCG888888888GNr   FD
check_rankc                    |0t          j        |          st          t          |                    }t          | j        ||                                          S )a  
    Compute the Hermite Normal Form of a Matrix *A* of integers.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.matrices.normalforms import hermite_normal_form
    >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]])
    >>> print(hermite_normal_form(m))
    Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]])

    Parameters
    ==========

    A : $m \times n$ ``Matrix`` of integers.

    D : int, optional
        Let $W$ be the HNF of *A*. If known in advance, a positive integer *D*
        being any multiple of $\det(W)$ may be provided. In this case, if *A*
        also has rank $m$, then we may use an alternative algorithm that works
        mod *D* in order to prevent coefficient explosion.

    check_rank : boolean, optional (default=False)
        The basic assumption is that, if you pass a value for *D*, then
        you already believe that *A* has rank $m$, so we do not waste time
        checking it for you. If you do want this to be checked (and the
        ordinary, non-modulo *D* algorithm to be used if the check fails), then
        set *check_rank* to ``True``.

    Returns
    =======

    ``Matrix``
        The HNF of matrix *A*.

    Raises
    ======

    DMDomainError
        If the domain of the matrix is not :ref:`ZZ`.

    DMShapeError
        If the mod *D* algorithm is used but the matrix has more rows than
        columns.

    References
    ==========

    .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
       (See Algorithms 2.4.5 and 2.4.8.)

    Nr/   )r   of_typeint_hnf_repr   )Ar0   r1   s      r   r   r   F   sJ    n 	}RZ]]}s1vvJJ!
333==???r   r   )__doc__sympy.polys.domains.integerringr   sympy.polys.polytoolsr   sympy.polys.matricesr    sympy.polys.matrices.normalformsr   r   r   r*   r   r5   r   r(   r   r   <module>r=      s    2 2 . . . . . . & & & & & & - - - - - -                   &   0 !% 9@ 9@ 9@ 9@ 9@ 9@ 9@r   