
    g	                         d dl mZ d dlmZ  G d de          Z G d de          Z G d de          Z G d	 d
e          ZdS )    )	Predicate)
Dispatcherc                   0    e Zd ZdZdZ edd          ZdS )PrimePredicatea  
    Prime number predicate.

    Explanation
    ===========

    ``ask(Q.prime(x))`` is true iff ``x`` is a natural number greater
    than 1 that has no positive divisors other than ``1`` and the
    number itself.

    Examples
    ========

    >>> from sympy import Q, ask
    >>> ask(Q.prime(0))
    False
    >>> ask(Q.prime(1))
    False
    >>> ask(Q.prime(2))
    True
    >>> ask(Q.prime(20))
    False
    >>> ask(Q.prime(-3))
    False

    primePrimeHandlerzHandler for key 'prime'. Test that an expression represents a prime number. When the expression is an exact number, the result (when True) is subject to the limitations of isprime() which is used to return the result.docN__name__
__module____qualname____doc__namer   handler     `/var/www/html/ai-engine/env/lib/python3.11/site-packages/sympy/assumptions/predicates/ntheory.pyr   r      s=         4 Dj  GGGr   r   c                   0    e Zd ZdZdZ edd          ZdS )CompositePredicatea  
    Composite number predicate.

    Explanation
    ===========

    ``ask(Q.composite(x))`` is true iff ``x`` is a positive integer and has
    at least one positive divisor other than ``1`` and the number itself.

    Examples
    ========

    >>> from sympy import Q, ask
    >>> ask(Q.composite(0))
    False
    >>> ask(Q.composite(1))
    False
    >>> ask(Q.composite(2))
    False
    >>> ask(Q.composite(20))
    True

    	compositeCompositeHandlerzHandler for key 'composite'.r	   Nr   r   r   r   r   r   *   s5         . Dj+1OPPPGGGr   r   c                   0    e Zd ZdZdZ edd          ZdS )EvenPredicateaY  
    Even number predicate.

    Explanation
    ===========

    ``ask(Q.even(x))`` is true iff ``x`` belongs to the set of even
    integers.

    Examples
    ========

    >>> from sympy import Q, ask, pi
    >>> ask(Q.even(0))
    True
    >>> ask(Q.even(2))
    True
    >>> ask(Q.even(3))
    False
    >>> ask(Q.even(pi))
    False

    evenEvenHandlerzHandler for key 'even'.r	   Nr   r   r   r   r   r   F   s4         . Dj,EFFFGGGr   r   c                   0    e Zd ZdZdZ edd          ZdS )OddPredicateaN  
    Odd number predicate.

    Explanation
    ===========

    ``ask(Q.odd(x))`` is true iff ``x`` belongs to the set of odd numbers.

    Examples
    ========

    >>> from sympy import Q, ask, pi
    >>> ask(Q.odd(0))
    False
    >>> ask(Q.odd(2))
    False
    >>> ask(Q.odd(3))
    True
    >>> ask(Q.odd(pi))
    False

    odd
OddHandlerzHHandler for key 'odd'. Test that an expression represents an odd number.r	   Nr   r   r   r   r   r   b   s=         , Dj  GGGr   r   N)sympy.assumptionsr   sympy.multipledispatchr   r   r   r   r   r   r   r   <module>r#      s    ' ' ' ' ' ' - - - - - -" " " " "Y " " "JQ Q Q Q Q Q Q Q8G G G G GI G G G8    9     r   