
    Ngk                    l    d dl mZ d dlmZ d dlmZmZ d ZddddZddddZ	dddd	Z
dddd
ZdS )    )annotations)conv_sequences)is_nonesetupPandasc                   | st          |          S dt          |           z  dz
  }d}d}d}t          |           }dt          |           dz
  z  }i }|j        }	d}
| D ]} |	|d          |
z  ||<   |
dz  }
|D ]s} |	|d          }| |z  dz  |z  }||z  |z   |z  |z  |z  }||z  }|||z   z  }||z  }|||z  dk    z  }|||z  dk    z  }|dz  dz  }|dz  }|||z   z  }||z  }|}t|S )N   r   )lenget)s1s2VPVND0PM_j_oldcurrDistmaskblock	block_getxch1ch2PM_jTRHPHNs                    U/var/www/html/ai-engine/env/lib/python3.11/site-packages/rapidfuzz/distance/OSA_py.py_osa_distance_hyrroe2003r   	   su    2ww
s2ww,!	B	
B	
BH2wwHR1DE	I	A  YsA&&*c
	a  ya  t|!X-r	R2%-2"W BG*_"W 	R$Y1$$R$Y1$$ Ag]1WBG*_"WO    N)	processorscore_cutoffc                   | ||           }  ||          }t          | |          \  } }t          | |          }|||k    r|n|dz   S )a  
    Calculates the optimal string alignment (OSA) distance.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Examples
    --------
    Find the OSA distance between two strings:

    >>> from rapidfuzz.distance import OSA
    >>> OSA.distance("CA", "AC")
    2
    >>> OSA.distance("CA", "ABC")
    3
    Nr   )r   r   )r   r   r   r    dists        r   distancer#   4   sf    P Yr]]Yr]]B##FB#B++D (DL,@,@44|VWGWWr   c                   | ||           }  ||          }t          | |          \  } }t          t          |           t          |                    }t          | |          }||z
  }|||k    r|ndS )a5  
    Calculates the optimal string alignment (OSA) similarity in the range [max, 0].

    This is calculated as ``max(len1, len2) - distance``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2
    Nr   )r   maxr	   r#   )r   r   r   r    maximumr"   sims          r   
similarityr(   e   s    @ Yr]]Yr]]B##FB#b''3r77##GBD
D.C'3,+>+>33QFr   c               R   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          t	          |           t	          |                    }t          | |          }|r||z  nd}|||k    r|ndS )aM  
    Calculates a normalized optimal string alignment (OSA) similarity in the range [1, 0].

    This is calculated as ``distance / max(len1, len2)``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
        which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 0 and 1.0
          ?Nr   r   )r   r   r   r%   r	   r#   )r   r   r   r    r&   r"   	norm_dists          r   normalized_distancer,      s    > MMMr{{ gbkk sYr]]Yr]]B##FB#b''3r77##GBD")0wqI%-l1J1J99QRRr   c                   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          | |          }d|z
  }|||k    r|ndS )aE  
    Calculates a normalized optimal string alignment (OSA) similarity in the range [0, 1].

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is 0,
        which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0
    g        Nr*   r   )r   r   r   r,   )r   r   r   r    r+   norm_sims         r   normalized_similarityr/      s    > MMMr{{ gbkk sYr]]Yr]]B##FB#B++IYH$,L0H0H88qPr   )
__future__r   rapidfuzz._common_pyr   rapidfuzz._utilsr   r   r   r#   r(   r,   r/    r   r   <module>r4      s    # " " " " " / / / / / / 1 1 1 1 1 1 1 1( ( (^ .X .X .X .X .Xj (G (G (G (G (G^ +S +S +S +S +Sd *Q *Q *Q *Q *Q *Q *Qr   