
    Ng2'                        d dl mZ d dlmZ d dlmZmZ d dlmZ	 d dlm
Z d dlmZ d dlmZ ddd	d
Z	 ddZddd	dZddd	dZ	 ddZddd	dZ	 ddZdddZ
dddZdS )    )annotations)conv_sequences)is_nonesetupPandas)_block_similarity)editops)opcodes)
similarityN)	processorscore_cutoffc                   | ||           }  ||          }t          | |          \  } }t          |           t          |          z   }t          | |          }|d|z  z
  }|||k    r|n|dz   S )a  
    Calculates the minimum number of insertions and deletions
    required to change one sequence into the other. This is equivalent to the
    Levenshtein distance with a substitution weight of 2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Examples
    --------
    Find the Indel distance between two strings:

    >>> from rapidfuzz.distance import Indel
    >>> Indel.distance("lewenstein", "levenshtein")
    3

    Setting a maximum distance allows the implementation to select
    a more efficient implementation:

    >>> Indel.distance("lewenstein", "levenshtein", score_cutoff=1)
    2

    N      )r   lenlcs_seq_similarity)s1s2r   r   maximumlcs_simdists          W/var/www/html/ai-engine/env/lib/python3.11/site-packages/rapidfuzz/distance/Indel_py.pydistancer      s    ^ Yr]]Yr]]B##FB"ggBG R((GQ[ D (DL,@,@44|VWGWW    c                    t          |          t          |          z   }t          | ||          }|d|z  z
  }|||k    r|n|dz   S )Nr   r   )r   lcs_seq_block_similarity)blockr   r   r   r   r   r   s          r   _block_distancer   G   sX     "ggBG&ub"55GQ[ D (DL,@,@44|VWGWWr   c                   | ||           }  ||          }t          | |          \  } }t          |           t          |          z   }t          | |          }||z
  }|||k    r|ndS )a  
    Calculates the Indel similarity in the range [max, 0].

    This is calculated as ``(len1 + len2) - distance``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2
    Nr   )r   r   r   )r   r   r   r   r   r   sims          r   r
   r
   S   s    @ Yr]]Yr]]B##FB"ggBGBD
D.C'3,+>+>33QFr   c               <   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          |           t          |          z   }t	          | |          }|r||z  nd}|||k    r|ndS )a8  
    Calculates a normalized levenshtein similarity in the range [1, 0].

    This is calculated as ``distance / (len1 + len2)``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
        which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 0 and 1.0
          ?Nr   r   )r   r   r   r   r   )r   r   r   r   r   r   	norm_dists          r   normalized_distancer#   ~   s    > MMMr{{ gbkk sYr]]Yr]]B##FB"ggBGBD")0wqI%-l1J1J99QRRr   c                    t          |          t          |          z   }t          | ||          }|r||z  nd}|||k    r|ndS )Nr   r   )r   r   )r   r   r   r   r   r   r"   s          r   _block_normalized_distancer%      sW     "ggBG5"b))D")0wqI%-l1J1J99QRRr   c                   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          | |          }d|z
  }|||k    r|ndS )a  
    Calculates a normalized indel similarity in the range [0, 1].

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is 0,
        which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0

    Examples
    --------
    Find the normalized Indel similarity between two strings:

    >>> from rapidfuzz.distance import Indel
    >>> Indel.normalized_similarity("lewenstein", "levenshtein")
    0.85714285714285

    Setting a score_cutoff allows the implementation to select
    a more efficient implementation:

    >>> Indel.normalized_similarity("lewenstein", "levenshtein", score_cutoff=0.9)
    0.0

    When a different processor is used s1 and s2 do not have to be strings

    >>> Indel.normalized_similarity(["lewenstein"], ["levenshtein"], processor=lambda s: s[0])
    0.8571428571428572
    g        Nr!   r   )r   r   r   r#   )r   r   r   r   r"   norm_sims         r   normalized_similarityr(      s    d MMMr{{ gbkk sYr]]Yr]]B##FB#B++IYH$,L0H0H88qPr   c                F    t          | ||          }d|z
  }|||k    r|ndS )Nr!   r   )r%   )r   r   r   r   r"   r'   s         r   _block_normalized_similarityr*      s7     +5"b99IYH$,L0H0H88qPr   r   c               &    t          | ||          S )ua  
    Return Editops describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.

    Returns
    -------
    editops : Editops
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [6]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [6] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Indel
    >>> for tag, src_pos, dest_pos in Indel.editops("qabxcd", "abycdf"):
    ...    print(("%7s s1[%d] s2[%d]" % (tag, src_pos, dest_pos)))
     delete s1[0] s2[0]
     delete s1[3] s2[2]
     insert s1[4] s2[2]
     insert s1[6] s2[5]
    r+   )lcs_seq_editopsr   r   r   s      r   r   r     s    X 2rY7777r   c               &    t          | ||          S )u  
    Return Opcodes describing how to turn s1 into s2.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.

    Returns
    -------
    opcodes : Opcodes
        edit operations required to turn s1 into s2

    Notes
    -----
    The alignment is calculated using an algorithm of Heikki Hyyrö, which is
    described [7]_. It has a time complexity and memory usage of ``O([N/64] * M)``.

    References
    ----------
    .. [7] Hyyrö, Heikki. "A Note on Bit-Parallel Alignment Computation."
           Stringology (2004).

    Examples
    --------
    >>> from rapidfuzz.distance import Indel

    >>> a = "qabxcd"
    >>> b = "abycdf"
    >>> for tag, i1, i2, j1, j2 in Indel.opcodes(a, b):
    ...    print(("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
    ...           (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2])))
     delete a[0:1] (q) b[0:0] ()
      equal a[1:3] (ab) b[0:2] (ab)
     delete a[3:4] (x) b[2:2] ()
     insert a[4:4] () b[2:3] (y)
      equal a[4:6] (cd) b[3:5] (cd)
     insert a[6:6] () b[5:6] (f)
    r+   )lcs_seq_opcodesr.   s      r   r	   r	   2  s    d 2rY7777r   )N)
__future__r   rapidfuzz._common_pyr   rapidfuzz._utilsr   r   rapidfuzz.distance.LCSseq_pyr   r   r   r-   r	   r0   r
   r   r   r   r#   r%   r(   r*    r   r   <module>r6      s   # " " " " " / / / / / / 1 1 1 1 1 1 1 1 V V V V V V C C C C C C C C C C C C I I I I I I 7X 7X 7X 7X 7X| 		X 	X 	X 	X  (G (G (G (G (G^ +S +S +S +S +Sd 		S 	S 	S 	S  =Q =Q =Q =Q =QH 	Q Q Q Q 	,8 ,8 ,8 ,8 ,8f 	28 28 28 28 28 28 28r   