
    Ng                    l    d dl mZ d dlmZ d dlmZmZ d ZddddZddddZ	dddd	Z
dddd
ZdS )    )annotations)conv_sequences)is_nonesetupPandasc                   t          t          |           t          |                    dz   }i }|j        }t          |          dz   }|g|z  }|g|z  }t          t	          |                    }||d<   t	          dt          |           dz             D ]/}	||}}d}
|d         }|	|d<   |}t	          dt          |          dz             D ]}||dz
           | |	dz
           ||dz
           k    z   }||dz
           dz   }||         dz   }t          |||          }| |	dz
           ||dz
           k    r|}
||dz
           ||<   |}n` |||dz
           d          }|
}||z
  dk    r||         |	|z
  z   }t          ||          }n!|	|z
  dk    r|||z
  z   }t          ||          }||         }|||<   |	|| |	dz
           <   1|t          |                   S )N      r   )maxlengetlistrangemin)s1s2maxVallast_row_idlast_row_id_getsizeFRR1Rilast_col_id	last_i2l1Tjdiagleftuptempkl	transposes                        d/var/www/html/ai-engine/env/lib/python3.11/site-packages/rapidfuzz/distance/DamerauLevenshtein_py.py"_damerau_levenshtein_distance_zhaor'   	   s   R#b''""Q&FK!oOr77Q;D
DB
DBU4[[AAbE1c"ggk"" # #A2aD	!q#b''A+&& 	 	Aa!e91q5	RAY 67DQU8a<DABtT2&&D!a%yBq1uI%%1q5	1#OBq1uIr22Ea<< "1QItY//DD!e\\ !QUItY//D!IAaDD!"Bq1uISWW:    N)	processorscore_cutoffc                   | ||           }  ||          }t          | |          \  } }t          | |          }|||k    r|n|dz   S )a  
    Calculates the Damerau-Levenshtein distance.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the distance is bigger than score_cutoff,
        score_cutoff + 1 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    distance : int
        distance between s1 and s2

    Examples
    --------
    Find the Damerau-Levenshtein distance between two strings:

    >>> from rapidfuzz.distance import DamerauLevenshtein
    >>> DamerauLevenshtein.distance("CA", "ABC")
    2
    Nr   )r   r'   )r   r   r)   r*   dists        r&   distancer-   7   sf    L Yr]]Yr]]B##FB-b"55D (DL,@,@44|VWGWWr(   c                   | ||           }  ||          }t          | |          \  } }t          t          |           t          |                    }t          | |          }||z
  }|||k    r|ndS )a*  
    Calculates the Damerau-Levenshtein similarity in the range [max, 0].

    This is calculated as ``max(len1, len2) - distance``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : int, optional
        Maximum distance between s1 and s2, that is
        considered as a result. If the similarity is smaller than score_cutoff,
        0 is returned instead. Default is None, which deactivates
        this behaviour.

    Returns
    -------
    similarity : int
        similarity between s1 and s2
    Nr   )r   r   r   r-   )r   r   r)   r*   maximumr,   sims          r&   
similarityr1   f   s    @ Yr]]Yr]]B##FB#b''3r77##GBD
D.C'3,+>+>33QFr(   c               R   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          t	          |           t	          |                    }t          | |          }|r||z  nd}|||k    r|ndS )a@  
    Calculates a normalized Damerau-Levenshtein distance in the range [1, 0].

    This is calculated as ``distance / max(len1, len2)``.

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_dist > score_cutoff 1.0 is returned instead. Default is 1.0,
        which deactivates this behaviour.

    Returns
    -------
    norm_dist : float
        normalized distance between s1 and s2 as a float between 0 and 1.0
          ?Nr   r   )r   r   r   r   r   r-   )r   r   r)   r*   r/   r,   	norm_dists          r&   normalized_distancer5      s    > MMMr{{ gbkk sYr]]Yr]]B##FB#b''3r77##GBD")0wqI%-l1J1J99QRRr(   c                   t                       t          |           st          |          rdS | ||           }  ||          }t          | |          \  } }t          | |          }d|z
  }|||k    r|ndS )a:  
    Calculates a normalized Damerau-Levenshtein similarity in the range [0, 1].

    This is calculated as ``1 - normalized_distance``

    Parameters
    ----------
    s1 : Sequence[Hashable]
        First string to compare.
    s2 : Sequence[Hashable]
        Second string to compare.
    processor: callable, optional
        Optional callable that is used to preprocess the strings before
        comparing them. Default is None, which deactivates this behaviour.
    score_cutoff : float, optional
        Optional argument for a score threshold as a float between 0 and 1.0.
        For norm_sim < score_cutoff 0 is returned instead. Default is 0,
        which deactivates this behaviour.

    Returns
    -------
    norm_sim : float
        normalized similarity between s1 and s2 as a float between 0 and 1.0
    g        Nr3   r   )r   r   r   r5   )r   r   r)   r*   r4   norm_sims         r&   normalized_similarityr8      s    > MMMr{{ gbkk sYr]]Yr]]B##FB#B++IYH$,L0H0H88qPr(   )
__future__r   rapidfuzz._common_pyr   rapidfuzz._utilsr   r   r'   r-   r1   r5   r8    r(   r&   <module>r=      s    # " " " " " / / / / / / 1 1 1 1 1 1 1 1+ + +d ,X ,X ,X ,X ,Xf (G (G (G (G (G^ +S +S +S +S +Sd *Q *Q *Q *Q *Q *Q *Qr(   