
     Ng(                     h   d dl Z d dlZd dlZddlmZ  ej        e          Zd Zedk    r e            Z	e	j
        r2e	j        r+e	j        r$e                    d            ej                     e	j
        s+e	j        r$e                    d            ej                     e                    de	j                   e                    d	e	j                    ee	j        e	j        e	j
        e	j        e	j        e	j        e	j        e	j        e	j        e	j        e	j        e	j        e	j                   dS dS )
    N   )quant_pre_processc                     t          j        d          } |                     ddd           |                     ddd           |                     d	t          d
d           |                     dt          d
d           |                     dt          d
d           |                     dddd
           |                     ddt          d           |                     dddd
           |                     ddt          d           |                     dddd
           |                     d d!dd
           |                     d"d#d $           |                     d%d&t          d'           |                                 S )(Na  Model optimizer and shape inferencer, in preparation for quantization,
Consists of three optional steps:
1. Symbolic shape inference (best for transformer models).
2. Model optimization.
3. ONNX shape inference.

Model quantization with QDQ format, i.e. inserting QuantizeLinear/DeQuantizeLinear on
the tensor, requires tensor shape information to perform its best. Currently, shape inferencing
works best with optimized model. As a result, it is highly recommended to run quantization
on optimized model with shape information. This is the tool for optimization and shape
inferencing.

Essentially this tool performs the following three (skippable) steps:

1. Symbolic shape inference.
2. Model optimization
3. ONNX shape inference)descriptionz--inputTzPath to the input model file)requiredhelpz--outputzPath to the output model filez--skip_optimizationFzSkip model optimization step if true. It's a known issue that ORT optimization has difficulty with model size greater than 2GB, rerun with this option to get around this issue.)typedefaultr   z--skip_onnx_shapezSkip ONNX shape inference. Symbolic shape inference is most effective with transformer based models. Skipping all shape inferences may reduce the effectiveness of quantization, as a tensor with unknown shape can not be quantized.z--skip_symbolic_shapezSkip symbolic shape inference. Symbolic shape inference is most effective with transformer based models. Skipping all shape inferences may reduce the effectiveness of quantization, as a tensor with unknown shape can not be quantized.z--auto_mergez:Automatically merge symbolic dims when confliction happens
store_true)r   actionr
   z	--int_maxzGmaximum value for integer to be treated as boundless for ops like slicei)r   r	   r
   z--guess_output_rankz;guess output rank to be the same as input 0 for unknown opsz	--verbosezHPrints detailed logs of inference, 0: turn off, 1: warnings, 3: detailedr   z--save_as_external_dataz%Saving an ONNX model to external dataz--all_tensors_to_one_filez(Saving all the external data to one filez--external_data_locationz+The file location to save the external file)r   r
   z--external_data_size_thresholdz$The size threshold for external datai   )argparseArgumentParseradd_argumentboolint
parse_args)parsers    _/var/www/html/ai-engine/env/lib/python3.11/site-packages/onnxruntime/quantization/preprocess.pyparse_argumentsr      sF   $  F( 	D7UVVV

T8WXXX
1	     '	     4	     I	     V	     J	     W	     !4	     #7	     ":    
 (3	         __main__z9Skipping all three steps, nothing to be done. Quitting...z:ORT model optimization does not support external data yet!zinput model: %szoutput model: %s)r   loggingsysshape_inferencer   	getLogger__name__loggerr   argsskip_optimizationskip_onnx_shapeskip_symbolic_shapeerrorexitsave_as_external_datainfoinputoutput
auto_mergeint_maxguess_output_rankverboseall_tensors_to_one_fileexternal_data_locationexternal_data_size_threshold r   r   <module>r0      s     



 . . . . . .		8	$	$` ` `F z?D $"6 4;S PQQQ


" (B QRRR



KK!4:...
KK"DK000
 "$#)     r   