
    Ng$                     4    d dl mZmZ  G d de          ZdS )    )ABCMetaabstractmethodc                       e Zd ZdZdZdZddZd Zed             Z	d Z
edd	            Zd
 Zd Zd Zd Zd Zd Zd Zd Zeed                         ZdS )Featurea  
    An abstract base class for Features. A Feature is a combination of
    a specific property-computing method and a list of relative positions
    to apply that method to.

    The property-computing method, M{extract_property(tokens, index)},
    must be implemented by every subclass. It extracts or computes a specific
    property for the token at the current index. Typical extract_property()
    methods return features such as the token text or tag; but more involved
    methods may consider the entire sequence M{tokens} and
    for instance compute the length of the sentence the token belongs to.

    In addition, the subclass may have a PROPERTY_NAME, which is how
    it will be printed (in Rules and Templates, etc). If not given, defaults
    to the classname.

    znltk.tbl.FeatureNc                 ~   d| _         |,t          t          d |D                                 | _         nj	 ||k    rt          t          t	          ||dz                       | _         n6# t          $ r)}t          d                    ||                    |d}~ww xY w| j        j        p| j        j	        | _        dS )al  
        Construct a Feature which may apply at C{positions}.

        >>> # For instance, importing some concrete subclasses (Feature is abstract)
        >>> from nltk.tag.brill import Word, Pos

        >>> # Feature Word, applying at one of [-2, -1]
        >>> Word([-2,-1])
        Word([-2, -1])

        >>> # Positions need not be contiguous
        >>> Word([-2,-1, 1])
        Word([-2, -1, 1])

        >>> # Contiguous ranges can alternatively be specified giving the
        >>> # two endpoints (inclusive)
        >>> Pos(-3, -1)
        Pos([-3, -2, -1])

        >>> # In two-arg form, start <= end is enforced
        >>> Pos(2, 1)
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
          File "nltk/tbl/template.py", line 306, in __init__
            raise TypeError
        ValueError: illegal interval specification: (start=2, end=1)

        :type positions: list of int
        :param positions: the positions at which this features should apply
        :raises ValueError: illegal position specifications

        An alternative calling convention, for contiguous positions only,
        is Feature(start, end):

        :type start: int
        :param start: start of range where this feature should apply
        :type end: int
        :param end: end of range (NOTE: inclusive!) where this feature should apply
        Nc                 ,    h | ]}t          |          S  )int).0is     L/var/www/html/ai-engine/env/lib/python3.11/site-packages/nltk/tbl/feature.py	<setcomp>z#Feature.__init__.<locals>.<setcomp>M   s    *E*E*Ea3q66*E*E*E       z2illegal interval specification: (start={}, end={}))
	positionstuplesorted	TypeErrorrange
ValueErrorformat	__class__PROPERTY_NAME__name__)selfr   endes       r   __init__zFeature.__init__#   s    P ;"6*E*E9*E*E*E#F#FGGDNN
s??#O!&uYa'@'@!A!A    HOO!3   	 "^9TT^=Ts   2A* *
B4$BBc                     | j         S N)r   r   s    r   encode_json_objzFeature.encode_json_obj^   s
    ~r   c                     |} | |          S r    r	   )clsobjr   s      r   decode_json_objzFeature.decode_json_obja   s    	s9~~r   c                 J    | j         j         dt          | j                  dS )N())r   r   listr   r!   s    r   __repr__zFeature.__repr__f   s(    .)EED,@,@EEEEr   Fc                      t          d |D                       st          d|           fd|D             } fd|D             S )a  
        Return a list of features, one for each start point in starts
        and for each window length in winlen. If excludezero is True,
        no Features containing 0 in its positions will be generated
        (many tbl trainers have a special representation for the
        target feature at [0])

        For instance, importing a concrete subclass (Feature is abstract)

        >>> from nltk.tag.brill import Word

        First argument gives the possible start positions, second the
        possible window lengths

        >>> Word.expand([-3,-2,-1], [1])
        [Word([-3]), Word([-2]), Word([-1])]

        >>> Word.expand([-2,-1], [1])
        [Word([-2]), Word([-1])]

        >>> Word.expand([-3,-2,-1], [1,2])
        [Word([-3]), Word([-2]), Word([-1]), Word([-3, -2]), Word([-2, -1])]

        >>> Word.expand([-2,-1], [1])
        [Word([-2]), Word([-1])]

        A third optional argument excludes all Features whose positions contain zero

        >>> Word.expand([-2,-1,0], [1,2], excludezero=False)
        [Word([-2]), Word([-1]), Word([0]), Word([-2, -1]), Word([-1, 0])]

        >>> Word.expand([-2,-1,0], [1,2], excludezero=True)
        [Word([-2]), Word([-1]), Word([-2, -1])]

        All window lengths must be positive

        >>> Word.expand([-2,-1], [0])
        Traceback (most recent call last):
          File "<stdin>", line 1, in <module>
          File "nltk/tag/tbl/template.py", line 371, in expand
            :param starts: where to start looking for Feature
        ValueError: non-positive window length in [0]

        :param starts: where to start looking for Feature
        :type starts: list of ints
        :param winlens: window lengths where to look for Feature
        :type starts: list of ints
        :param excludezero: do not output any Feature with 0 in any of its positions.
        :type excludezero: bool
        :returns: list of Features
        :raises ValueError: for non-positive window lengths
        c              3   "   K   | ]
}|d k    V  dS )r   Nr	   )r   xs     r   	<genexpr>z!Feature.expand.<locals>.<genexpr>   s&      **Q1q5******r   znon-positive window length in c              3   |   K   | ]6}t          t                    |z
  d z             D ]}|||z            V  7dS )r   N)r   len)r   wr   startss      r   r/   z!Feature.expand.<locals>.<genexpr>   sU      UUA%FaRS@S:T:TUUQfQQYUUUUUUUr   c                 2    g | ]}rd |v  |          S )r   r	   )r   r.   r$   excludezeros     r   
<listcomp>z"Feature.expand.<locals>.<listcomp>   s+    CCC1;C166A666r   )allr   )r$   r3   winlensr5   xss   `` ` r   expandzFeature.expandi   su    l **'***** 	IGgGGHHHUUUUUUUCCCCCCCCCr   c                 r    | j         |j         u o)t          | j                  t          |j                  k    S )aQ  
        Return True if this Feature always returns True when other does

        More precisely, return True if this feature refers to the same property as other;
        and this Feature looks at all positions that other does (and possibly
        other positions in addition).

        #For instance, importing a concrete subclass (Feature is abstract)
        >>> from nltk.tag.brill import Word, Pos

        >>> Word([-3,-2,-1]).issuperset(Word([-3,-2]))
        True

        >>> Word([-3,-2,-1]).issuperset(Word([-3,-2, 0]))
        False

        #Feature subclasses must agree
        >>> Word([-3,-2,-1]).issuperset(Pos([-3,-2]))
        False

        :param other: feature with which to compare
        :type other: (subclass of) Feature
        :return: True if this feature is superset, otherwise False
        :rtype: bool


        )r   setr   r   others     r   
issupersetzFeature.issuperset   s>    8 ~0 
S5H5HCOM
 M
 6
 	
r   c                     t          | j        |j        u o(t          | j                  t          |j                  z            S )a  
        Return True if the positions of this Feature intersects with those of other

        More precisely, return True if this feature refers to the same property as other;
        and there is some overlap in the positions they look at.

        #For instance, importing a concrete subclass (Feature is abstract)
        >>> from nltk.tag.brill import Word, Pos

        >>> Word([-3,-2,-1]).intersects(Word([-3,-2]))
        True

        >>> Word([-3,-2,-1]).intersects(Word([-3,-2, 0]))
        True

        >>> Word([-3,-2,-1]).intersects(Word([0]))
        False

        #Feature subclasses must agree
        >>> Word([-3,-2,-1]).intersects(Pos([-3,-2]))
        False

        :param other: feature with which to compare
        :type other: (subclass of) Feature
        :return: True if feature classes agree and there is some overlap in the positions they look at
        :rtype: bool
        )boolr   r<   r   r=   s     r   
intersectszFeature.intersects   sC    : Neo- ;DN##c%/&:&::
 
 	
r   c                 >    | j         |j         u o| j        |j        k    S r    )r   r   r=   s     r   __eq__zFeature.__eq__   s    ~0VT^u5VVr   c                 V    | j         j        |j         j        k     p| j        |j        k     S r    )r   r   r   r=   s     r   __lt__zFeature.__lt__   s,    N#eo&>> - NU_,		
r   c                     | |k     S r    r	   r=   s     r   __ne__zFeature.__ne__   s    EM""r   c                     || k     S r    r	   r=   s     r   __gt__zFeature.__gt__   s    t|r   c                     | |k      S r    r	   r=   s     r   __ge__zFeature.__ge__   s    %<r   c                     | |k     p| |k    S r    r	   r=   s     r   __le__zFeature.__le__   s    e|,tu},r   c                     dS )a@  
        Any subclass of Feature must define static method extract_property(tokens, index)

        :param tokens: the sequence of tokens
        :type tokens: list of tokens
        :param index: the current index
        :type index: int
        :return: feature value
        :rtype: any (but usually scalar)
        Nr	   )tokensindexs     r   extract_propertyzFeature.extract_property   s      r   r    )F)r   
__module____qualname____doc__json_tagr   r   r"   classmethodr&   r+   r:   r?   rB   rD   rF   rH   rJ   rL   rN   staticmethodr   rR   r	   r   r   r   r      sF        $ "HM9U 9U 9U 9Uv     [F F F 8D 8D 8D [8Dt
 
 
@ 
  
  
HW W W
 
 
# # #       - - - 
 
 ^ \
 
 
r   r   )	metaclassN)abcr   r   r   r	   r   r   <module>r[      sc    ( ' ' ' ' ' ' '~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~r   