
    g&                         d dl m Z  ddlmZ  G d de          Zd Zdd
Zee_        edk    rd dlZ ej	                     dS dS )    )bisect   )xrangec                       e Zd ZdS )
ODEMethodsN)__name__
__module____qualname__     P/var/www/html/ai-engine/env/lib/python3.11/site-packages/mpmath/calculus/odes.pyr   r      s        Dr   r   c                 L   |                      d|           x}t          |          }|g}|g}	|}
|| j        }	 |d|z   z  | _        t          |          D ]g} ||
          fdt	          t                              D             |
z  }
|                    |
           |	                               hd t          |          D             }t          |dz             D ]}dg|z  }d|dz  z  }d}t          |dz             D ]G}t          |          D ]!}||xx         ||	|         |         z  z  cc<   "|||z
  dz   z  | z  }|dz  }H| z  |                     |          z  }t          |          D ]1}||         |z  ||<   ||                             ||                    2	 || _        n# || _        w xY w| j        }|D ]D}|d         r:t          || 	                    |t          |d                   z  |                    }E|dz  }|||z   fS )N   c                 8    g | ]}|         |         z  z   S r   r   ).0ifxyhys     r   
<listcomp>zode_taylor.<locals>.<listcomp>   s)    77711aAh777r   c                     g | ]}g S r   r   )r   ds     r   r   zode_taylor.<locals>.<listcomp>   s    &&&ar&&&r   r   r   )ldexplenprecranger   appendfaconeminnthrootabs)ctxderivsx0y0tol_precntoldimxsysxorigr   serjsbkr   scaleradiustsr   r   r   s                         @@@r   
ode_taylorr8      s   iiH9%%%A
b''C
B
B
A
A8D1: q 	 	A&A,,C777777s1vv777AFAIIaLLLIIaLLLL&&5::&&&qs 	$ 	$ACAQAA1Q3ZZ  s ) )AaDDDA1aL(DDDD!A#a%[qb)QGcggajj(E3ZZ $ $te|!Aad####$	$ 4 WF B Bb6 	BSRV_a!@!@AAF
aKF6	>s   E9G   	G	NtaylorFc           	          |r(t                               |d                     dz   n
 j        dz   pdt          d j        z  dz            z    j        dz   	 t	          |           dn# t
          $ r fd|g}dY nw xY wt           |          \  }}	|	g||	fg fd	 f	d
 fd}
|
S )a  
    Returns a function `y(x) = [y_0(x), y_1(x), \ldots, y_n(x)]`
    that is a numerical solution of the `n+1`-dimensional first-order
    ordinary differential equation (ODE) system

    .. math ::

        y_0'(x) = F_0(x, [y_0(x), y_1(x), \ldots, y_n(x)])

        y_1'(x) = F_1(x, [y_0(x), y_1(x), \ldots, y_n(x)])

        \vdots

        y_n'(x) = F_n(x, [y_0(x), y_1(x), \ldots, y_n(x)])

    The derivatives are specified by the vector-valued function
    *F* that evaluates
    `[y_0', \ldots, y_n'] = F(x, [y_0, \ldots, y_n])`.
    The initial point `x_0` is specified by the scalar argument *x0*,
    and the initial value `y(x_0) =  [y_0(x_0), \ldots, y_n(x_0)]` is
    specified by the vector argument *y0*.

    For convenience, if the system is one-dimensional, you may optionally
    provide just a scalar value for *y0*. In this case, *F* should accept
    a scalar *y* argument and return a scalar. The solution function
    *y* will return scalar values instead of length-1 vectors.

    Evaluation of the solution function `y(x)` is permitted
    for any `x \ge x_0`.

    A high-order ODE can be solved by transforming it into first-order
    vector form. This transformation is described in standard texts
    on ODEs. Examples will also be given below.

    **Options, speed and accuracy**

    By default, :func:`~mpmath.odefun` uses a high-order Taylor series
    method. For reasonably well-behaved problems, the solution will
    be fully accurate to within the working precision. Note that
    *F* must be possible to evaluate to very high precision
    for the generation of Taylor series to work.

    To get a faster but less accurate solution, you can set a large
    value for *tol* (which defaults roughly to *eps*). If you just
    want to plot the solution or perform a basic simulation,
    *tol = 0.01* is likely sufficient.

    The *degree* argument controls the degree of the solver (with
    *method='taylor'*, this is the degree of the Taylor series
    expansion). A higher degree means that a longer step can be taken
    before a new local solution must be generated from *F*,
    meaning that fewer steps are required to get from `x_0` to a given
    `x_1`. On the other hand, a higher degree also means that each
    local solution becomes more expensive (i.e., more evaluations of
    *F* are required per step, and at higher precision).

    The optimal setting therefore involves a tradeoff. Generally,
    decreasing the *degree* for Taylor series is likely to give faster
    solution at low precision, while increasing is likely to be better
    at higher precision.

    The function
    object returned by :func:`~mpmath.odefun` caches the solutions at all step
    points and uses polynomial interpolation between step points.
    Therefore, once `y(x_1)` has been evaluated for some `x_1`,
    `y(x)` can be evaluated very quickly for any `x_0 \le x \le x_1`.
    and continuing the evaluation up to `x_2 > x_1` is also fast.

    **Examples of first-order ODEs**

    We will solve the standard test problem `y'(x) = y(x), y(0) = 1`
    which has explicit solution `y(x) = \exp(x)`::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> f = odefun(lambda x, y: y, 0, 1)
        >>> for x in [0, 1, 2.5]:
        ...     print((f(x), exp(x)))
        ...
        (1.0, 1.0)
        (2.71828182845905, 2.71828182845905)
        (12.1824939607035, 12.1824939607035)

    The solution with high precision::

        >>> mp.dps = 50
        >>> f = odefun(lambda x, y: y, 0, 1)
        >>> f(1)
        2.7182818284590452353602874713526624977572470937
        >>> exp(1)
        2.7182818284590452353602874713526624977572470937

    Using the more general vectorized form, the test problem
    can be input as (note that *f* returns a 1-element vector)::

        >>> mp.dps = 15
        >>> f = odefun(lambda x, y: [y[0]], 0, [1])
        >>> f(1)
        [2.71828182845905]

    :func:`~mpmath.odefun` can solve nonlinear ODEs, which are generally
    impossible (and at best difficult) to solve analytically. As
    an example of a nonlinear ODE, we will solve `y'(x) = x \sin(y(x))`
    for `y(0) = \pi/2`. An exact solution happens to be known
    for this problem, and is given by
    `y(x) = 2 \tan^{-1}\left(\exp\left(x^2/2\right)\right)`::

        >>> f = odefun(lambda x, y: x*sin(y), 0, pi/2)
        >>> for x in [2, 5, 10]:
        ...     print((f(x), 2*atan(exp(mpf(x)**2/2))))
        ...
        (2.87255666284091, 2.87255666284091)
        (3.14158520028345, 3.14158520028345)
        (3.14159265358979, 3.14159265358979)

    If `F` is independent of `y`, an ODE can be solved using direct
    integration. We can therefore obtain a reference solution with
    :func:`~mpmath.quad`::

        >>> f = lambda x: (1+x**2)/(1+x**3)
        >>> g = odefun(lambda x, y: f(x), pi, 0)
        >>> g(2*pi)
        0.72128263801696
        >>> quad(f, [pi, 2*pi])
        0.72128263801696

    **Examples of second-order ODEs**

    We will solve the harmonic oscillator equation `y''(x) + y(x) = 0`.
    To do this, we introduce the helper functions `y_0 = y, y_1 = y_0'`
    whereby the original equation can be written as `y_1' + y_0' = 0`. Put
    together, we get the first-order, two-dimensional vector ODE

    .. math ::

        \begin{cases}
        y_0' = y_1 \\
        y_1' = -y_0
        \end{cases}

    To get a well-defined IVP, we need two initial values. With
    `y(0) = y_0(0) = 1` and `-y'(0) = y_1(0) = 0`, the problem will of
    course be solved by `y(x) = y_0(x) = \cos(x)` and
    `-y'(x) = y_1(x) = \sin(x)`. We check this::

        >>> f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0])
        >>> for x in [0, 1, 2.5, 10]:
        ...     nprint(f(x), 15)
        ...     nprint([cos(x), sin(x)], 15)
        ...     print("---")
        ...
        [1.0, 0.0]
        [1.0, 0.0]
        ---
        [0.54030230586814, 0.841470984807897]
        [0.54030230586814, 0.841470984807897]
        ---
        [-0.801143615546934, 0.598472144103957]
        [-0.801143615546934, 0.598472144103957]
        ---
        [-0.839071529076452, -0.54402111088937]
        [-0.839071529076452, -0.54402111088937]
        ---

    Note that we get both the sine and the cosine solutions
    simultaneously.

    **TODO**

    * Better automatic choice of degree and step size
    * Make determination of Taylor series convergence radius
      more robust
    * Allow solution for `x < x_0`
    * Allow solution for complex `x`
    * Test for difficult (ill-conditioned) problems
    * Implement Runge-Kutta and other algorithms

    r   
      g       @(   Tc                 *     | |d                   gS )Nr   r   )r.   r   F_s     r   <lambda>zodefun.<locals>.<lambda>   s    ""Q!++ r   Fc                 $    fd| D             S )Nc                 N    g | ]!}                     |d d d                   "S )Nr   )polyval)r   r2   ar$   s     r   r   z,odefun.<locals>.mpolyval.<locals>.<listcomp>   s1    555AAdddGQ''555r   r   )r0   rD   r$   s    `r   mpolyvalzodefun.<locals>.mpolyval   s!    555555555r   c                   	 | k     rt           t          
|           }|t          
          k     r|dz
           S 	 d         \  }}}rt          d||fz              	|||z
            }|}t	          ||          \  }}
                    |                               |||f           | |k    rd         S )Nr   r   z$Computing Taylor series for [%f, %f])
ValueErrorr   r   printr8   r   )r.   r)   r0   xaxbr   Fr$   degreerE   series_boundariesseries_datar(   verboser&   s         r   
get_serieszodefun.<locals>.get_series   s    r66$a((s$%%%%qs##
	'%b/KCR I<BxGHHHbe$$AB aQ&AAGC$$R(((R}---Bww"2&
	'r   c                                          |           } j        }	 
_         |           \  }}} || |z
            }|_        n# |_        w xY w	rd |D             S |d         
 S )Nc                     g | ]}|
 S r   r   )r   yks     r   r   z/odefun.<locals>.interpolant.<locals>.<listcomp>  s    $$$BRC$$$r   r   )convertr   )r.   r/   r0   rI   rJ   r   r$   rP   rE   return_vectorworkprecs         r   interpolantzodefun.<locals>.interpolant  s    KKNNx	CH$*Q--KCRad##ACHHtCHOOOO 	$$!$$$$aD5Ls   %A 	A)intlogr   dpsr   	TypeErrorr8   )r$   rK   r&   r'   r*   rL   methodrO   r0   rJ   rW   r?   rP   rE   rU   rM   rN   r(   rV   s   ```  ` `   @@@@@@@@r   odefunr]   3   s   f  Q'((+8B;.C#'	"---Fx"}HB   &&&&T	
 aR6::GCRR=/K6 6 6 6 6' ' ' ' ' ' ' ' ' ' ' ' '$         s   ,A> >BB__main__)NNr9   F)
r   libmp.backendr   objectr   r8   r]   r   doctesttestmodr   r   r   <module>rc      s          " " " " " "	 	 	 	 	 	 	 	* * *Xg g g gR 
 zNNNGO r   