from __future__ import annotations

import json
import logging
from hashlib import sha1
from threading import Thread
from typing import Any, Dict, Iterable, List, Optional, Tuple

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from pydantic_settings import BaseSettings, SettingsConfigDict

logger = logging.getLogger()
DEBUG = False


class ApacheDorisSettings(BaseSettings):
    """Apache Doris client configuration.

    Attributes:
        apache_doris_host (str) : An URL to connect to frontend.
                             Defaults to 'localhost'.
        apache_doris_port (int) : URL port to connect with HTTP. Defaults to 9030.
        username (str) : Username to login. Defaults to 'root'.
        password (str) : Password to login. Defaults to None.
        database (str) : Database name to find the table. Defaults to 'default'.
        table (str) : Table name to operate on.
                      Defaults to 'langchain'.

        column_map (Dict) : Column type map to project column name onto langchain
                            semantics. Must have keys: `text`, `id`, `vector`,
                            must be same size to number of columns. For example:
                            .. code-block:: python

                                {
                                    'id': 'text_id',
                                    'embedding': 'text_embedding',
                                    'document': 'text_plain',
                                    'metadata': 'metadata_dictionary_in_json',
                                }

                            Defaults to identity map.
    """

    host: str = "localhost"
    port: int = 9030
    username: str = "root"
    password: str = ""

    column_map: Dict[str, str] = {
        "id": "id",
        "document": "document",
        "embedding": "embedding",
        "metadata": "metadata",
    }

    database: str = "default"
    table: str = "langchain"

    def __getitem__(self, item: str) -> Any:
        return getattr(self, item)

    model_config = SettingsConfigDict(
        env_file=".env",
        env_file_encoding="utf-8",
        env_prefix="apache_doris_",
        extra="ignore",
    )


class ApacheDoris(VectorStore):
    """`Apache Doris` vector store.

    You need a `pymysql` python package, and a valid account
    to connect to Apache Doris.

    For more information, please visit
        [Apache Doris official site](https://doris.apache.org/)
        [Apache Doris github](https://github.com/apache/doris)
    """

    def __init__(
        self,
        embedding: Embeddings,
        *,
        config: Optional[ApacheDorisSettings] = None,
        **kwargs: Any,
    ) -> None:
        """Constructor for Apache Doris.

        Args:
            embedding (Embeddings): Text embedding model.
            config (ApacheDorisSettings): Apache Doris client configuration information.
        """
        try:
            import pymysql  # type: ignore[import]
        except ImportError:
            raise ImportError(
                "Could not import pymysql python package. "
                "Please install it with `pip install pymysql`."
            )
        try:
            from tqdm import tqdm

            self.pgbar = tqdm
        except ImportError:
            # Just in case if tqdm is not installed
            self.pgbar = lambda x, **kwargs: x
        super().__init__()
        if config is not None:
            self.config = config
        else:
            self.config = ApacheDorisSettings()
        assert self.config
        assert self.config.host and self.config.port
        assert self.config.column_map and self.config.database and self.config.table
        for k in ["id", "embedding", "document", "metadata"]:
            assert k in self.config.column_map

        # initialize the schema
        dim = len(embedding.embed_query("test"))

        self.schema = f"""\
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(    
    {self.config.column_map['id']} varchar(50),
    {self.config.column_map['document']} string,
    {self.config.column_map['embedding']} array<float>,
    {self.config.column_map['metadata']} string
) ENGINE = OLAP UNIQUE KEY(id) DISTRIBUTED BY HASH(id) \
  PROPERTIES ("replication_allocation" = "tag.location.default: 1")\
"""
        self.dim = dim
        self.BS = "\\"
        self.must_escape = ("\\", "'")
        self._embedding = embedding
        self.dist_order = "DESC"
        _debug_output(self.config)

        # Create a connection to Apache Doris
        self.connection = pymysql.connect(
            host=self.config.host,
            port=self.config.port,
            user=self.config.username,
            password=self.config.password,
            database=self.config.database,
            **kwargs,
        )

        _debug_output(self.schema)
        _get_named_result(self.connection, self.schema)

    def escape_str(self, value: str) -> str:
        return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)

    @property
    def embeddings(self) -> Embeddings:
        return self._embedding

    def _build_insert_sql(self, transac: Iterable, column_names: Iterable[str]) -> str:
        ks = ",".join(column_names)
        embed_tuple_index = tuple(column_names).index(
            self.config.column_map["embedding"]
        )
        _data = []
        for n in transac:
            n = ",".join(
                [
                    (
                        f"'{self.escape_str(str(_n))}'"
                        if idx != embed_tuple_index
                        else f"{str(_n)}"
                    )
                    for (idx, _n) in enumerate(n)
                ]
            )
            _data.append(f"({n})")
        i_str = f"""
                INSERT INTO
                    {self.config.database}.{self.config.table}({ks})
                VALUES
                {','.join(_data)}
                """
        return i_str

    def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None:
        _insert_query = self._build_insert_sql(transac, column_names)
        _debug_output(_insert_query)
        _get_named_result(self.connection, _insert_query)

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        batch_size: int = 32,
        ids: Optional[Iterable[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Insert more texts through the embeddings and add to the VectorStore.

        Args:
            texts: Iterable of strings to add to the VectorStore.
            ids: Optional list of ids to associate with the texts.
            batch_size: Batch size of insertion
            metadata: Optional column data to be inserted

        Returns:
            List of ids from adding the texts into the VectorStore.

        """
        # Embed and create the documents
        ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts]
        colmap_ = self.config.column_map
        transac = []
        column_names = {
            colmap_["id"]: ids,
            colmap_["document"]: texts,
            colmap_["embedding"]: self._embedding.embed_documents(list(texts)),
        }
        metadatas = metadatas or [{} for _ in texts]
        column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
        assert len(set(colmap_) - set(column_names)) >= 0
        keys, values = zip(*column_names.items())
        try:
            t = None
            for v in self.pgbar(
                zip(*values), desc="Inserting data...", total=len(metadatas)
            ):
                assert (
                    len(v[keys.index(self.config.column_map["embedding"])]) == self.dim
                )
                transac.append(v)
                if len(transac) == batch_size:
                    if t:
                        t.join()
                    t = Thread(target=self._insert, args=[transac, keys])
                    t.start()
                    transac = []
            if len(transac) > 0:
                if t:
                    t.join()
                self._insert(transac, keys)
            return [i for i in ids]
        except Exception as e:
            logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
            return []

    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[Dict[Any, Any]]] = None,
        config: Optional[ApacheDorisSettings] = None,
        text_ids: Optional[Iterable[str]] = None,
        batch_size: int = 32,
        **kwargs: Any,
    ) -> ApacheDoris:
        """Create Apache Doris wrapper with existing texts

        Args:
            embedding_function (Embeddings): Function to extract text embedding
            texts (Iterable[str]): List or tuple of strings to be added
            config (ApacheDorisSettings, Optional): Apache Doris configuration
            text_ids (Optional[Iterable], optional): IDs for the texts.
                                                     Defaults to None.
            batch_size (int, optional): BatchSize when transmitting data to Apache
                                        Doris. Defaults to 32.
            metadata (List[dict], optional): metadata to texts. Defaults to None.
        Returns:
            Apache Doris Index
        """
        ctx = cls(embedding, config=config, **kwargs)
        ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas)
        return ctx

    def __repr__(self) -> str:
        """Text representation for Apache Doris Vector Store, prints frontends, username
            and schemas. Easy to use with `str(ApacheDoris())`

        Returns:
            repr: string to show connection info and data schema
        """
        _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ "
        _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n"
        _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n"
        width = 25
        fields = 3
        _repr += "-" * (width * fields + 1) + "\n"
        columns = ["name", "type", "key"]
        _repr += f"|\033[94m{columns[0]:24s}\033[0m|\033[96m{columns[1]:24s}"
        _repr += f"\033[0m|\033[96m{columns[2]:24s}\033[0m|\n"
        _repr += "-" * (width * fields + 1) + "\n"
        q_str = f"DESC {self.config.database}.{self.config.table}"
        _debug_output(q_str)
        rs = _get_named_result(self.connection, q_str)
        for r in rs:
            _repr += f"|\033[94m{r['Field']:24s}\033[0m|\033[96m{r['Type']:24s}"
            _repr += f"\033[0m|\033[96m{r['Key']:24s}\033[0m|\n"
        _repr += "-" * (width * fields + 1) + "\n"
        return _repr

    def _build_query_sql(
        self, q_emb: List[float], topk: int, where_str: Optional[str] = None
    ) -> str:
        q_emb_str = ",".join(map(str, q_emb))
        if where_str:
            where_str = f"WHERE {where_str}"
        else:
            where_str = ""

        q_str = f"""
            SELECT {self.config.column_map['document']}, 
                {self.config.column_map['metadata']}, 
                cosine_distance(array<float>[{q_emb_str}],
                  {self.config.column_map['embedding']}) as dist
            FROM {self.config.database}.{self.config.table}
            {where_str}
            ORDER BY dist {self.dist_order}
            LIMIT {topk}
            """

        _debug_output(q_str)
        return q_str

    def similarity_search(
        self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
    ) -> List[Document]:
        """Perform a similarity search with Apache Doris

        Args:
            query (str): query string
            k (int, optional): Top K neighbors to retrieve. Defaults to 4.
            where_str (Optional[str], optional): where condition string.
                                                 Defaults to None.

            NOTE: Please do not let end-user to fill this and always be aware
                  of SQL injection. When dealing with metadatas, remember to
                  use `{self.metadata_column}.attribute` instead of `attribute`
                  alone. The default name for it is `metadata`.

        Returns:
            List[Document]: List of Documents
        """
        return self.similarity_search_by_vector(
            self._embedding.embed_query(query), k, where_str, **kwargs
        )

    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        where_str: Optional[str] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Perform a similarity search with Apache Doris by vectors

        Args:
            query (str): query string
            k (int, optional): Top K neighbors to retrieve. Defaults to 4.
            where_str (Optional[str], optional): where condition string.
                                                 Defaults to None.

            NOTE: Please do not let end-user to fill this and always be aware
                  of SQL injection. When dealing with metadatas, remember to
                  use `{self.metadata_column}.attribute` instead of `attribute`
                  alone. The default name for it is `metadata`.

        Returns:
            List[Document]: List of (Document, similarity)
        """
        q_str = self._build_query_sql(embedding, k, where_str)
        try:
            return [
                Document(
                    page_content=r[self.config.column_map["document"]],
                    metadata=json.loads(r[self.config.column_map["metadata"]]),
                )
                for r in _get_named_result(self.connection, q_str)
            ]
        except Exception as e:
            logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
            return []

    def similarity_search_with_relevance_scores(
        self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
    ) -> List[Tuple[Document, float]]:
        """Perform a similarity search with Apache Doris

        Args:
            query (str): query string
            k (int, optional): Top K neighbors to retrieve. Defaults to 4.
            where_str (Optional[str], optional): where condition string.
                                                 Defaults to None.

            NOTE: Please do not let end-user to fill this and always be aware
                  of SQL injection. When dealing with metadatas, remember to
                  use `{self.metadata_column}.attribute` instead of `attribute`
                  alone. The default name for it is `metadata`.

        Returns:
            List[Document]: List of documents
        """
        q_str = self._build_query_sql(self._embedding.embed_query(query), k, where_str)
        try:
            return [
                (
                    Document(
                        page_content=r[self.config.column_map["document"]],
                        metadata=json.loads(r[self.config.column_map["metadata"]]),
                    ),
                    r["dist"],
                )
                for r in _get_named_result(self.connection, q_str)
            ]
        except Exception as e:
            logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
            return []

    def drop(self) -> None:
        """
        Helper function: Drop data
        """
        _get_named_result(
            self.connection,
            f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}",
        )

    @property
    def metadata_column(self) -> str:
        return self.config.column_map["metadata"]


def _has_mul_sub_str(s: str, *args: Any) -> bool:
    """Check if a string has multiple substrings.

    Args:
        s: The string to check
        *args: The substrings to check for in the string

    Returns:
        bool: True if all substrings are present in the string, False otherwise
    """
    for a in args:
        if a not in s:
            return False
    return True


def _debug_output(s: Any) -> None:
    """Print a debug message if DEBUG is True.

    Args:
        s: The message to print
    """
    if DEBUG:
        print(s)  # noqa: T201


def _get_named_result(connection: Any, query: str) -> List[dict[str, Any]]:
    """Get a named result from a query.

    Args:
        connection: The connection to the database
        query: The query to execute

    Returns:
        List[dict[str, Any]]: The result of the query
    """
    cursor = connection.cursor()
    cursor.execute(query)
    columns = cursor.description
    result = []
    for value in cursor.fetchall():
        r = {}
        for idx, datum in enumerate(value):
            k = columns[idx][0]
            r[k] = datum
        result.append(r)
    _debug_output(result)
    cursor.close()
    return result
