
    Ng                        d dl mZ d dlZd dlZd dlmZmZmZmZm	Z	m
Z
mZmZ d dlZd dlmZ d dlmZ d dlmZ d dlmZ d dlmZ erd d	lmZmZ d d
lmZ  ej        e          Z  G d de          Z!dS )    )annotationsN)TYPE_CHECKINGAnyIterableListOptionalTupleUnioncast)Document)
Embeddings)batch_iterate)VectorStore)maximal_marginal_relevance
AsyncIndexIndex)
InfoResultc                     e Zd ZdZ	 	 	 	 	 	 dUdddVdZedWd            ZdXdZdYdZ	 	 	 dZddd[d'Z		 	 	 dZddd\d)Z
	 	 	 	 d]ddd^d,Z	 	 	 	 d]ddd^d-Z	 	 d_ddd`d3Z	 	 d_ddd`d4Zdad7Z	 	 d_dddbd8Z	 	 d_dddbd9Z	 	 d_dddcd:Z	 	 d_dddcd;Z	 	 d_ddddd<Z	 	 d_ddddd=Z	 	 d_ddd`d>Z	 	 d_ddd`d?Z	 	 	 	 dedddfdEZ	 	 	 	 dedddfdFZ	 	 	 	 dedddgdGZ	 	 	 	 dedddgdHZe	 	 	 	 	 	 	 	 	 dhdddidJ            Ze	 	 	 	 	 	 	 	 	 dhdddidK            Z	 	 	 djdddkdPZ	 	 	 djdddkdQZ dldSZ!dldTZ"dS )mUpstashVectorStorea/  Upstash Vector vector store

    To use, the ``upstash-vector`` python package must be installed.

    Also an Upstash Vector index is required. First create a new Upstash Vector index
    and copy the `index_url` and `index_token` variables. Then either pass
    them through the constructor or set the environment
    variables `UPSTASH_VECTOR_REST_URL` and `UPSTASH_VECTOR_REST_TOKEN`.

    Example:
        .. code-block:: python

            from langchain_openai import OpenAIEmbeddings
            from langchain_community.vectorstores import UpstashVectorStore

            embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
            vectorstore = UpstashVectorStore(
                embedding=embeddings,
                index_url="...",
                index_token="..."
            )

            # or

            import os

            os.environ["UPSTASH_VECTOR_REST_URL"] = "..."
            os.environ["UPSTASH_VECTOR_REST_TOKEN"] = "..."

            vectorstore = UpstashVectorStore(
                embedding=embeddings
            )
    textN 	namespacetext_keystrindexOptional[Index]async_indexOptional[AsyncIndex]	index_urlOptional[str]index_token	embedding!Optional[Union[Embeddings, bool]]r   c                  	 ddl m}m}	 n# t          $ r t          d          w xY w|rPt	          ||	          st          dt          |                     || _        t          	                    d           |rPt	          ||          st          dt          |                     || _
        t          	                    d           |rA|r? |	||          | _         |||          | _
        t          	                    d	           nF|sD|sB |	j                    | _         |j                    | _
        t          	                    d
           || _        || _        || _        dS )a  
        Constructor for UpstashVectorStore.

        If index or index_url and index_token are not provided, the constructor will
        attempt to create an index using the environment variables
        `UPSTASH_VECTOR_REST_URL`and `UPSTASH_VECTOR_REST_TOKEN`.

        Args:
            text_key: Key to store the text in metadata.
            index: UpstashVector Index object.
            async_index: UpstashVector AsyncIndex object, provide only if async
            functions are needed
            index_url: URL of the UpstashVector index.
            index_token: Token of the UpstashVector index.
            embedding: Embeddings object or a boolean. When false, no embedding
                is applied. If true, Upstash embeddings are used. When Upstash
                embeddings are used, text is sent directly to Upstash and
                embedding is applied there instead of embedding in Langchain.
            namespace: Namespace to use from the index.

        Example:
            .. code-block:: python

                from langchain_community.vectorstores.upstash import UpstashVectorStore
                from langchain_community.embeddings.openai import OpenAIEmbeddings

                embeddings = OpenAIEmbeddings()
                vectorstore = UpstashVectorStore(
                    embedding=embeddings,
                    index_url="...",
                    index_token="...",
                    namespace="..."
                )

                # With an existing index
                from upstash_vector import Index

                index = Index(url="...", token="...")
                vectorstore = UpstashVectorStore(
                    embedding=embeddings,
                    index=index,
                    namespace="..."
                )
        r   r   zdCould not import upstash_vector python package. Please install it with `pip install upstash_vector`.zGPassed index object should be an instance of upstash_vector.Index, got z#Using the index passed as parameterzLPassed index object should be an instance of upstash_vector.AsyncIndex, got z)Using the async index passed as parameter)urltokenz;Created index from the index_url and index_token parametersz)Created index using environment variablesN)upstash_vectorr   r   ImportError
isinstance
ValueErrortype_indexloggerinfo_async_indexfrom_env_embeddings	_text_key
_namespace)
selfr   r   r   r!   r#   r$   r   r   r   s
             d/var/www/html/ai-engine/env/lib/python3.11/site-packages/langchain_community/vectorstores/upstash.py__init__zUpstashVectorStore.__init__;   s   p	888888888 	 	 	G  	  	?eU++  );;) )  
  DKKK=>>> 	Ek:66  /,,/ /  
 !,DKKCDDD 	E 	E%I[AAADK *
y L L LDKKUVVVV 	E{ 	E(%.**DK 3
 3 5 5DKKCDDD$!#s    %returnc                    | j         S )z/Access the query embedding object if available.)r3   r6   s    r7   
embeddingszUpstashVectorStore.embeddings   s         textsIterable[str]#Union[List[List[float]], List[str]]c                    | j         st          d          t          | j         t                    r'| j                             t          |                    S t          |          S )z)Embed strings using the embeddings objectLNo embeddings object provided. Pass an embeddings object to the constructor.)r3   r,   r+   r   embed_documentslist)r6   r>   s     r7   _embed_documentsz#UpstashVectorStore._embed_documents   sj      	@   d&
33 	A#33DKK@@@ E{{r=   Union[List[float], str]c                    | j         st          d          t          | j         t                    r| j                             |          S |S )z-Embed query text using the embeddings object.rB   )r3   r,   r+   r   embed_query)r6   r   s     r7   _embed_queryzUpstashVectorStore._embed_query   sZ     	@   d&
33 	6#//555 r=         	documentsList[Document]idsOptional[List[str]]
batch_sizeintembedding_chunk_sizekwargsr   	List[str]c          	     Z    d |D             }d |D             } | j         |f|||||d|S )  
        Get the embeddings for the documents and add them to the vectorstore.

        Documents are sent to the embeddings object
        in batches of size `embedding_chunk_size`.
        The embeddings are then upserted into the vectorstore
        in batches of size `batch_size`.

        Args:
            documents: Iterable of Documents to add to the vectorstore.
            batch_size: Batch size to use when upserting the embeddings.
            Upstash supports at max 1000 vectors per request.
            embedding_batch_size: Chunk size to use when embedding the texts.
            namespace: Namespace to use from the index.

        Returns:
            List of ids from adding the texts into the vectorstore.

        c                    g | ]	}|j         
S  page_content.0docs     r7   
<listcomp>z4UpstashVectorStore.add_documents.<locals>.<listcomp>       777c!777r=   c                    g | ]	}|j         
S rX   metadatar[   s     r7   r^   z4UpstashVectorStore.add_documents.<locals>.<listcomp>       777cS\777r=   )	metadatasrP   rN   rR   r   	add_texts	r6   rL   rN   rP   rR   r   rS   r>   rd   s	            r7   add_documentsz UpstashVectorStore.add_documents   sf    : 87Y77777Y777	t~
!!5
 
 
 
 	
r=   Iterable[Document]c          	     j   K   d |D             }d |D             } | j         |f|||||d| d{V S )rV   c                    g | ]	}|j         
S rX   rY   r[   s     r7   r^   z5UpstashVectorStore.aadd_documents.<locals>.<listcomp>  r_   r=   c                    g | ]	}|j         
S rX   ra   r[   s     r7   r^   z5UpstashVectorStore.aadd_documents.<locals>.<listcomp>  rc   r=   rd   rN   rP   rR   r   N
aadd_textsrg   s	            r7   aadd_documentsz!UpstashVectorStore.aadd_documents   s      : 87Y77777Y777	$T_
!!5
 
 
 
 
 
 
 
 
 
 	
r=   rd   Optional[List[dict]]c          
        || j         }t          |          }|pd |D             }|rd |D             }nd |D             }t          ||          D ]\  }}	|	|| j        <   t	          dt          |          |          D ]}
||
|
|z            }||
|
|z            }||
|
|z            }|                     |          }t          |t          |||                    D ]*} | j        j	        d|t          t          |          d| +|S )c  
        Get the embeddings for the texts and add them to the vectorstore.

        Texts are sent to the embeddings object
        in batches of size `embedding_chunk_size`.
        The embeddings are then upserted into the vectorstore
        in batches of size `batch_size`.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            ids: Optional list of ids to associate with the texts.
            batch_size: Batch size to use when upserting the embeddings.
            Upstash supports at max 1000 vectors per request.
            embedding_batch_size: Chunk size to use when embedding the texts.
            namespace: Namespace to use from the index.

        Returns:
            List of ids from adding the texts into the vectorstore.

        Nc                N    g | ]"}t          t          j                              #S rX   r   uuiduuid4r\   _s     r7   r^   z0UpstashVectorStore.add_texts.<locals>.<listcomp>6  &    777Ac$*,,''777r=   c                6    g | ]}|                                 S rX   copyr\   ms     r7   r^   z0UpstashVectorStore.add_texts.<locals>.<listcomp>:       555a555r=   c                    g | ]}i S rX   rX   rx   s     r7   r^   z0UpstashVectorStore.add_texts.<locals>.<listcomp><      ++++++r=   r   vectorsr   rX   )r5   rD   zipr4   rangelenrE   r   r.   upsertr   r   r6   r>   rd   rN   rP   rR   r   rS   rb   r   ichunk_texts	chunk_idschunk_metadatasr<   batchs                   r7   rf   zUpstashVectorStore.add_texts  s   @ IU777777  	,559555II++U+++I ")U33 	, 	,NHd'+HT^$$q#e**&:;; 	 	AA(<$< <=KA$8 889I'A0D,D(DEO..{;;J&C	:GG    #" !T#y-A-A EK    
r=   c          
     &  K   || j         }t          |          }|pd |D             }|rd |D             }nd |D             }t          ||          D ]\  }}	|	|| j        <   t	          dt          |          |          D ]}
||
|
|z            }||
|
|z            }||
|
|z            }|                     |          }t          |t          |||                    D ]0} | j        j	        d|t          t          |          d| d{V  1|S )rs   Nc                N    g | ]"}t          t          j                              #S rX   ru   rx   s     r7   r^   z1UpstashVectorStore.aadd_texts.<locals>.<listcomp>u  rz   r=   c                6    g | ]}|                                 S rX   r|   r~   s     r7   r^   z1UpstashVectorStore.aadd_texts.<locals>.<listcomp>y  r   r=   c                    g | ]}i S rX   rX   rx   s     r7   r^   z1UpstashVectorStore.aadd_texts.<locals>.<listcomp>{  r   r=   r   r   rX   )r5   rD   r   r4   r   r   rE   r   r1   r   r   r   r   s                   r7   ro   zUpstashVectorStore.aadd_textsQ  s     @ IU777777  	,559555II++U+++I ")U33 	, 	,NHd'+HT^$$q#e**&:;; 	 	AA(<$< <=KA$8 889I'A0D,D(DEO..{;;J&C	:GG    /d'. !T#y-A-A EK          
r=      querykfilterList[Tuple[Document, float]]c               L     | j         |                     |          f|||d|S )  Retrieve texts most similar to query and
        convert the result to `Document` objects.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents most similar to the query and score for each
        r   r   r   )&similarity_search_by_vector_with_scorerI   r6   r   r   r   r   rS   s         r7   similarity_search_with_scorez/UpstashVectorStore.similarity_search_with_score  sE    * ;t:e$$
()&I
 
QW
 
 	
r=   c               \   K    | j         |                     |          f|||d| d{V S )r   r   N)'asimilarity_search_by_vector_with_scorerI   r   s         r7   asimilarity_search_with_scorez0UpstashVectorStore.asimilarity_search_with_score  sh      * BTAe$$
()&I
 
QW
 
 
 
 
 
 
 
 	
r=   resultsr   c                   g }|D ]}|j         }|rQ| j        |v rH|                    | j                  }t          ||          }|                    ||j        f           \t                              d| j         d           |S )NrZ   rb   zFound document with no `z` key. Skipping.)rb   r4   popr   appendscorer/   warning)r6   r   docsresrb   r   r]   s          r7   _process_resultsz#UpstashVectorStore._process_results  s     		 		C|H DNh66||DN33D8DDDS#),----Ot~OOO    r=   c          	         |pd}|| j         }t          |t                    r | j        j        d||d||d|}n | j        j        d||d||d|}|                     |          S z>Return texts whose embedding is closest to the given embeddingr   NT)datatop_kinclude_metadatar   r   )vectorr   r   r   r   rX   )r5   r+   r   r.   r   r   r6   r$   r   r   r   rS   r   s          r7   r   z9UpstashVectorStore.similarity_search_by_vector_with_score  s     2Ii%% 	'dk' !%#   GG (dk'  !%#   G $$W---r=   c          	        K   |pd}|| j         }t          |t                    r | j        j        d||d||d| d{V }n | j        j        d||d||d| d{V }|                     |          S r   )r5   r+   r   r1   r   r   r   s          r7   r   z:UpstashVectorStore.asimilarity_search_by_vector_with_score  s       2Ii%% 	3D-3 !%#         GG 4D-3  !%#         G $$W---r=   c               >     | j         |f|||d|}d |D             S )a  Return documents most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents most similar to the query and score for each
        r   c                    g | ]\  }}|S rX   rX   r\   r]   ry   s      r7   r^   z8UpstashVectorStore.similarity_search.<locals>.<listcomp>1      222Q222r=   r   r6   r   r   r   r   rS   docs_and_scoress          r7   similarity_searchz$UpstashVectorStore.similarity_search  sJ    ( <$;
v
 
>D
 
 32/2222r=   c               N   K    | j         |f|||d| d{V }d |D             S )ar  Return documents most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents most similar to the query
        r   Nc                    g | ]\  }}|S rX   rX   r   s      r7   r^   z9UpstashVectorStore.asimilarity_search.<locals>.<listcomp>J  r   r=   r   r   s          r7   asimilarity_searchz%UpstashVectorStore.asimilarity_search3  sm      ( !C B!
v!
 !
>D!
 !
 
 
 
 
 
 
 32/2222r=   c               >     | j         |f|||d|}d |D             S )  Return documents closest to the given embedding.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents most similar to the query
        r   c                    g | ]\  }}|S rX   rX   r   s      r7   r^   zBUpstashVectorStore.similarity_search_by_vector.<locals>.<listcomp>c  r   r=   )r   r6   r$   r   r   r   rS   r   s          r7   similarity_search_by_vectorz.UpstashVectorStore.similarity_search_by_vectorL  sK    ( F$E
6Y
 
BH
 
 32/2222r=   c               N   K    | j         |f|||d| d{V }d |D             S )r   r   Nc                    g | ]\  }}|S rX   rX   r   s      r7   r^   zCUpstashVectorStore.asimilarity_search_by_vector.<locals>.<listcomp>|  r   r=   )r   r   s          r7   asimilarity_search_by_vectorz/UpstashVectorStore.asimilarity_search_by_vectore  sm      ( !M L!
6Y!
 !
BH!
 !
 
 
 
 
 
 
 32/2222r=   c               &     | j         |f|||d|S )`
        Since Upstash always returns relevance scores, default implementation is used.
        r   r   r   s         r7   (_similarity_search_with_relevance_scoresz;UpstashVectorStore._similarity_search_with_relevance_scores~  s7     1t0
v
 
>D
 
 	
r=   c               6   K    | j         |f|||d| d{V S )r   r   Nr   r   s         r7   )_asimilarity_search_with_relevance_scoresz<UpstashVectorStore._asimilarity_search_with_relevance_scores  sY       8T7
v
 
>D
 
 
 
 
 
 
 
 	
r=            ?fetch_klambda_multfloatc          
        
 | j         }t           j        t                    sJ t          |t                    r  j        j        d||dd|pd|d|
n  j        j        d||dd|pd|d|
t          t          j	        |gt          j
                  d 
D             ||          }
fd	|D             }	 fd
|	D             S )g  Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents selected by maximal marginal relevance.
        NTr   r   r   include_vectorsr   r   r   r   r   r   r   r   r   dtypec                    g | ]	}|j         
S rX   r   r\   items     r7   r^   zNUpstashVectorStore.max_marginal_relevance_search_by_vector.<locals>.<listcomp>      ---TT[---r=   r   r   c                *    g | ]}|         j         S rX   ra   r\   r   r   s     r7   r^   zNUpstashVectorStore.max_marginal_relevance_search_by_vector.<locals>.<listcomp>       >>>AGAJ'>>>r=   c                b    g | ]+}t          |                    j                  |           ,S r   r   r   r4   r\   rb   r6   s     r7   r^   zNUpstashVectorStore.max_marginal_relevance_search_by_vector.<locals>.<listcomp>  D     
 
 
 (,,"@"@8TTT
 
 
r=   rX   )r5   r+   r<   r   r   r.   r   r   nparrayfloat32r6   r$   r   r   r   r   r   rS   mmr_selectedselectedr   s   `         @r7   'max_marginal_relevance_search_by_vectorz:UpstashVectorStore.max_marginal_relevance_search_by_vector  sJ   < I$/:66666i%% 	'dk'  $!%|#   GG (dk'   $!%|#   G 2Hi[
333--W---#	
 
 
 ?>>>>>>
 
 
 
$
 
 
 	
r=   c          
        
K   | j         }t           j        t                    sJ t          |t                    r"  j        j        d||dd|pd|d| d{V 
n!  j        j        d||dd|pd|d| d{V 
t          t          j	        |gt          j
                  d 
D             ||          }
fd	|D             }	 fd
|	D             S )r   NTr   r   r   r   c                    g | ]	}|j         
S rX   r   r   s     r7   r^   zOUpstashVectorStore.amax_marginal_relevance_search_by_vector.<locals>.<listcomp>  r   r=   r   c                *    g | ]}|         j         S rX   ra   r   s     r7   r^   zOUpstashVectorStore.amax_marginal_relevance_search_by_vector.<locals>.<listcomp>  r   r=   c                b    g | ]+}t          |                    j                  |           ,S r   r   r   s     r7   r^   zOUpstashVectorStore.amax_marginal_relevance_search_by_vector.<locals>.<listcomp>   r   r=   rX   )r5   r+   r<   r   r   r1   r   r   r   r   r   r   s   `         @r7   (amax_marginal_relevance_search_by_vectorz;UpstashVectorStore.amax_marginal_relevance_search_by_vector  s     > I$/:66666i%% 	3D-3  $!%|#         GG 4D-3   $!%|#         G 2Hi[
333--W---#	
 
 
 ?>>>>>>
 
 
 
$
 
 
 	
r=   c          
     T    |                      |          } | j        d||||||d|S )^  Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5.
            filter: Optional metadata filter in str format
            namespace: Namespace to use from the index.

        Returns:
            List of Documents selected by maximal marginal relevance.
        r$   r   r   r   r   r   rX   )rI   r   	r6   r   r   r   r   r   r   rS   r$   s	            r7   max_marginal_relevance_searchz0UpstashVectorStore.max_marginal_relevance_search%  sT    < %%e,,	;t; 
#
 
 
 
 	
r=   c          
     d   K   |                      |          } | j        d||||||d| d{V S )r   r   NrX   )rI   r   r   s	            r7   amax_marginal_relevance_searchz1UpstashVectorStore.amax_marginal_relevance_searchN  sv      < %%e,,	BTB 
#
 
 
 
 
 
 
 
 
 
 	
r=   r   c               \     | d||||	|
||d|}|                     ||||||           |S )  Create a new UpstashVectorStore from a list of texts.

        Example:
            .. code-block:: python
                from langchain_community.vectorstores.upstash import UpstashVectorStore
                from langchain_community.embeddings import OpenAIEmbeddings

                embeddings = OpenAIEmbeddings()
                vector_store = UpstashVectorStore.from_texts(
                    texts,
                    embeddings,
                )
        )r$   r   r   r   r!   r#   r   rm   rX   re   clsr>   r$   rd   rN   rR   rP   r   r   r   r!   r#   r   rS   vector_stores                  r7   
from_textszUpstashVectorStore.from_textsw  sw    > s 	
##	
 	
 	
 	
 	!!5 	 	
 	
 	
 r=   c               l   K    | d||||	||
|d|}|                     ||||||           d{V  |S )r   )r$   r   r   r   r   r!   r#   )rd   rN   rP   r   rR   NrX   rn   r   s                  r7   afrom_textszUpstashVectorStore.afrom_texts  s      > s 	
##	
 	
 	
 	
 %%!!5 & 
 
 	
 	
 	
 	
 	
 	
 	
 r=   
delete_allOptional[bool]Optional[int]Nonec                   || j         }|r| j                            |           nA|0t          ||          D ]}| j                            ||           nt          d          dS aM  Delete by vector IDs

        Args:
            ids: List of ids to delete.
            delete_all: Delete all vectors in the index.
            batch_size: Batch size to use when deleting the embeddings.
            namespace: Namespace to use from the index.
            Upstash supports at max 1000 deletions per request.
        Nr   )rN   r   z+Either ids or delete_all should be provided)r5   r.   resetr   deleter,   r6   rN   r  rP   r   rS   r   s          r7   r  zUpstashVectorStore.delete  s    $ I 	LK	2222_&z377 C C""u	"BBBBC JKKKtr=   c                  K   || j         }|r"| j                            |           d{V  nG|6t          ||          D ]$}| j                            ||           d{V  %nt          d          dS r  )r5   r1   r  r   r  r,   r	  s          r7   adeletezUpstashVectorStore.adelete  s      $ I 	L#))I)>>>>>>>>>>_&z377 O O'..5I.NNNNNNNNNNO JKKKtr=   r   c                4    | j                                         S )8  Get statistics about the index.

        Returns:
            - total number of vectors
            - total number of vectors waiting to be indexed
            - total size of the index on disk in bytes
            - dimension count for the index
            - similarity function selected for the index
        )r.   r0   r;   s    r7   r0   zUpstashVectorStore.info  s     {!!!r=   c                D   K   | j                                          d{V S )r  N)r1   r0   r;   s    r7   ainfozUpstashVectorStore.ainfo)  s/       &++---------r=   )r   NNNNN)r   r   r   r   r   r    r!   r"   r#   r"   r$   r%   r   r   )r9   r%   )r>   r?   r9   r@   )r   r   r9   rF   )NrJ   rK   )rL   rM   rN   rO   rP   rQ   rR   rQ   r   r"   rS   r   r9   rT   )rL   ri   rN   rO   rP   rQ   rR   rQ   r   r"   rS   r   r9   rT   )NNrJ   rK   )r>   r?   rd   rq   rN   rO   rP   rQ   rR   rQ   r   r"   rS   r   r9   rT   )r   N)r   r   r   rQ   r   r"   r   r"   rS   r   r9   r   )r   r   r9   r   )r$   rF   r   rQ   r   r"   r   r"   rS   r   r9   r   )r   r   r   rQ   r   r"   r   r"   rS   r   r9   rM   )r$   rF   r   rQ   r   r"   r   r"   rS   r   r9   rM   )r   r   r   N)r$   rF   r   rQ   r   rQ   r   r   r   r"   r   r"   rS   r   r9   rM   )r   r   r   rQ   r   rQ   r   r   r   r"   r   r"   rS   r   r9   rM   )	NNrK   rJ   r   NNNN)r>   rT   r$   r   rd   rq   rN   rO   rR   rQ   rP   rQ   r   r   r   r   r   r    r!   r"   r#   r"   r   r   rS   r   r9   r   )NNrK   )rN   rO   r  r  rP   r  r   r"   rS   r   r9   r  )r9   r   )#__name__
__module____qualname____doc__r8   propertyr<   rE   rI   rh   rp   rf   ro   r   r   r   r   r   r   r   r   r   r   r   r   r   r   r   classmethodr   r   r  r  r0   r  rX   r=   r7   r   r      s          H !%,0#'%)7;^$ ^$ ^$ ^$ ^$ ^$ ^$@       X        " $($((
 $((
 (
 (
 (
 (
 (
Z $($((
 $((
 (
 (
 (
 (
 (
Z +/#'$(= $(= = = = = =D +/#'$(= $(= = = = = =D  $	
 $(
 
 
 
 
 
8  $	
 $(
 
 
 
 
 
2   "  $	#. $(#. #. #. #. #. #.P  $	#. $(#. #. #. #. #. #.P  $	3 $(3 3 3 3 3 38  $	3 $(3 3 3 3 3 38  $	3 $(3 3 3 3 3 38  $	3 $(3 3 3 3 3 38  $	
 $(
 
 
 
 
 
&  $	
 $(
 
 
 
 
 
&   $A
 $(A
 A
 A
 A
 A
 A
L   $B
 $(B
 B
 B
 B
 B
 B
N   $'
 $('
 '
 '
 '
 '
 '
X   $'
 $('
 '
 '
 '
 '
 '
R 
 +/#'$(!%,0#'%)1 1 1 1 1 1 [1f 
 +/#'$(!%,0#'%)1 1 1 1 1 1 [1j $(%)$(	 $(     B $(%)$(	 $(     >
" 
" 
" 
"
. 
. 
. 
. 
. 
.r=   r   )"
__future__r   loggingrv   typingr   r   r   r   r   r	   r
   r   numpyr   langchain_core.documentsr   langchain_core.embeddingsr   langchain_core.utils.iterr   langchain_core.vectorstoresr   &langchain_community.vectorstores.utilsr   r)   r   r   upstash_vector.typesr   	getLoggerr  r/   r   rX   r=   r7   <module>r!     s[   " " " " " "   S S S S S S S S S S S S S S S S S S S S     - - - - - - 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3       000000000//////		8	$	$[. [. [. [. [. [. [. [. [. [.r=   