
    Ng=                        d dl mZ d dlZd dlZd dlmZmZmZmZm	Z	m
Z
mZmZmZ d dlmZmZmZmZmZmZmZ d dlmZmZmZ 	 d dlmZ n# e$ r	 d dlmZ Y nw xY wd dlmZ d dl m!Z! d d	l"m#Z# d d
l$m%Z% dZ&dZ' e            Z( G d de%          Z)dS )    )annotationsN)	AnyCallableDictIterableListOptionalSequenceTupleType)REALColumnStringTablecreate_engineinserttext)ARRAYJSONTEXT)declarative_base)Document)
Embeddings)get_from_dict_or_env)VectorStorei   langchain_documentc                  6   e Zd ZdZeedddfdCdZ	 dDdEdZedFd            Z	dGdZ
dHdZdHdZdHdZ	 	 	 dIdJd&Z	 	 dKdLd,Z	 	 dKdMd.Z	 	 dKdNd1Z	 	 dKdOd2ZdDdPd4ZedeedddfdQd7            ZedRd9            ZeeedddfdSd;            ZedTdB            ZdS )U
AnalyticDBa  `AnalyticDB` (distributed PostgreSQL) vector store.

    AnalyticDB is a distributed full postgresql syntax cloud-native database.
    - `connection_string` is a postgres connection string.
    - `embedding_function` any embedding function implementing
        `langchain.embeddings.base.Embeddings` interface.
    - `collection_name` is the name of the collection to use. (default: langchain)
        - NOTE: This is not the name of the table, but the name of the collection.
            The tables will be created when initializing the store (if not exists)
            So, make sure the user has the right permissions to create tables.
    - `pre_delete_collection` if True, will delete the collection if it exists.
        (default: False)
        - Useful for testing.

    FNconnection_stringstrembedding_functionr   embedding_dimensionintcollection_namepre_delete_collectionboolloggerOptional[logging.Logger]engine_argsOptional[dict]returnNonec                    || _         || _        || _        || _        || _        |pt          j        t                    | _        | 	                    |           d S N)
r   r!   r"   r$   r%   logging	getLogger__name__r'   __post_init__)selfr   r!   r"   r$   r%   r'   r)   s           g/var/www/html/ai-engine/env/lib/python3.11/site-packages/langchain_community/vectorstores/analyticdb.py__init__zAnalyticDB.__init__+   s]     "3"4#6 .%:"; 1( ; ;;'''''    c                v    |pi }d|vrd|d<   t          | j        fi || _        |                                  dS )z'
        Initialize the store.
        pool_recyclei  N)r   r   enginecreate_collection)r3   r)   _engine_argss      r4   r2   zAnalyticDB.__post_init__=   s^     #(b ,..  ( $D$:KKlKK     r6   c                    | j         S r.   )r!   r3   s    r4   
embeddingszAnalyticDB.embeddingsQ   s    &&r6   Callable[[float], float]c                    | j         S r.   )_euclidean_relevance_score_fnr=   s    r4   _select_relevance_score_fnz%AnalyticDB._select_relevance_score_fnU   s    11r6   c                   t          | j        t          j        t	          dt
          dt          j                  t	          dt          t                              t	          dt          d          t	          dt          d          d           | j                                        5 }|                                5  t          j                            |           | j         d	}t!          d
| d          }|                    |                                          }|s8t!          d| d| j         d| j         d          }|                    |           d d d            n# 1 swxY w Y   d d d            d S # 1 swxY w Y   d S )NidT)primary_keydefault	embeddingdocumentnullablemetadataextend_existing_embedding_idxzi
                    SELECT 1
                    FROM pg_indexes
                    WHERE indexname = 'z';
                z&
                        CREATE INDEX z
                        ON zY USING ann(embedding)
                        WITH (
                            "dim" = z\,
                            "hnsw_m" = 100
                        );
                    )r   r$   BaserK   r   r   uuiduuid4r   r   r   r   r9   connectbegin
create_allr   executescalarr"   )r3   conn
index_nameindex_queryresultindex_statements         r4   create_table_if_not_existsz%AnalyticDB.create_table_if_not_existsX   s$    M44DDD;d,,:v555:td333 	
 	
 	
 	
 [  "" 	2d 2 2((... !% 4DDD
" )3    k2299;;  2&*&0  0  &*%=	  	' 	'O LL11172 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2 	2s7   )F >BE(F (E,	,F /E,	0F  FFc                d    | j         r|                                  |                                  d S r.   )r%   delete_collectionr\   r=   s    r4   r:   zAnalyticDB.create_collection   s7    % 	%""$$$'')))))r6   c                P   | j                             d           t          d| j         d          }| j                                        5 }|                                5  |                    |           d d d            n# 1 swxY w Y   d d d            d S # 1 swxY w Y   d S )NzTrying to delete collectionzDROP TABLE IF EXISTS ;)r'   debugr   r$   r9   rR   rS   rU   )r3   drop_statementrW   s      r4   r^   zAnalyticDB.delete_collection   s   7888Md6JMMMNN[  "" 	-d - -^,,,- - - - - - - - - - - - - - -	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	- 	-s6   B!B7BB	B
B	BB"B  textsIterable[str]	metadatasOptional[List[dict]]idsOptional[List[str]]
batch_sizekwargsr   	List[str]c                   |d |D             }| j                             t          |                    }|sd |D             }t          | j        t
          j        t          dt          d          t          dt          t                              t          dt          d	          t          d
t          d	          d          }g }| j                                        5 }	|	                                5  t!          ||||          D ]}\  }
}}}|                    |||
|d           t%          |          |k    rI|	                    t)          |                              |                     |                                 ~|r5|	                    t)          |                              |                     ddd           n# 1 swxY w Y   ddd           n# 1 swxY w Y   |S )ar  Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            kwargs: vectorstore specific parameters

        Returns:
            List of ids from adding the texts into the vectorstore.
        Nc                N    g | ]"}t          t          j                              #S  )r    rP   rQ   .0_s     r4   
<listcomp>z(AnalyticDB.add_texts.<locals>.<listcomp>   s&    4443tz||$$444r6   c                    g | ]}i S ro   ro   rp   s     r4   rs   z(AnalyticDB.add_texts.<locals>.<listcomp>   s    ++++++r6   rD   TrE   rG   rH   rI   rK   rL   )rD   rG   rH   rK   )r!   embed_documentslistr   r$   rO   rK   r   r   r   r   r   r   r9   rR   rS   zipappendlenrU   r   valuesclear)r3   rd   rf   rh   rj   rk   r>   chunks_tablechunks_table_datarW   rH   rK   chunk_idrG   s                 r4   	add_textszAnalyticDB.add_texts   s   $ ;44e444C,<<T%[[II
 	,++U+++I  M44000;d,,:v555:td333 
 
 
 [  "" 	Qd Q Q?B9c:@ @ 2 2;Hh) &,,"*)2(0(0	    ,--;;VL%9%9%@%@AR%S%STTT)//111 % QLL!5!5!<!<=N!O!OPPP+Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q 	Q0 
s7   #G#8CG G#G	G#G	G##G'*G'   querykfilterList[Document]c                h    | j                             |          }|                     |||          S )a`  Run similarity search with AnalyticDB with distance.

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query.
        )r   rG   r   r   )r!   embed_querysimilarity_search_by_vector)r3   r   r   r   rk   rG   s         r4   similarity_searchzAnalyticDB.similarity_search   sC    " +77U7CC	// 0 
 
 	
r6   List[Tuple[Document, float]]c                j    | j                             |          }|                     |||          }|S )ab  Return docs most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query and score for each
        r   )r!   r   &similarity_search_with_score_by_vector)r3   r   r   r   rG   docss         r4   similarity_search_with_scorez'AnalyticDB.similarity_search_with_score   sB      +77>>	::1V ; 
 
 r6   rG   List[float]c                    	 ddl m} n# t          $ r t          d          w xY wd}|6d |                                D             }dd                    |           }d j         d	| d
}||d} j                                        5 }	|	                    t          |          |          
                                }
d d d            n# 1 swxY w Y    fd|
D             }|S )Nr   )RowzRCould not import Row from sqlalchemy.engine. Please 'pip install sqlalchemy>=1.4'. c                $    g | ]\  }}d |d|S )zmetadata->>z = ro   )rq   keyvalues      r4   rs   zEAnalyticDB.similarity_search_with_score_by_vector.<locals>.<listcomp>  s:       6@c51c1111  r6   zWHERE z AND zW
            SELECT *, l2_distance(embedding, :embedding) as distance
            FROM z
            zL
            ORDER BY embedding <-> :embedding
            LIMIT :k
        )rG   r   c                f    g | ]-}t          |j        |j                   j        |j        ndf.S ))page_contentrK   N)r   rH   rK   r!   distance)rq   rZ   r3   s     r4   rs   zEAnalyticDB.similarity_search_with_score_by_vector.<locals>.<listcomp>!  s\     	!
 	!
 	!
  !'#_   $(#:#FD	!
 	!
 	!
r6   )sqlalchemy.enginer   ImportErroritemsjoinr$   r9   rR   rU   r   fetchall)r3   rG   r   r   r   filter_condition
conditions	sql_queryparamsrW   resultsdocuments_with_scoress   `           r4   r   z1AnalyticDB.similarity_search_with_score_by_vector   s   	------- 	 	 	8  	  DJLLNN  J  CZ(@(@BB&    	  )q11 [  "" 	Vd%)\\$y//6%J%J%S%S%U%UG	V 	V 	V 	V 	V 	V 	V 	V 	V 	V 	V 	V 	V 	V 	V	!
 	!
 	!
 	!
 "	!
 	!
 	!
 %$s   
 $6CCCc                J    |                      |||          }d |D             S )ak  Return docs most similar to embedding vector.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query vector.
        r   c                    g | ]\  }}|S ro   ro   )rq   docrr   s      r4   rs   z:AnalyticDB.similarity_search_by_vector.<locals>.<listcomp>A  s    222Q222r6   )r   )r3   rG   r   r   rk   docs_and_scoress         r4   r   z&AnalyticDB.similarity_search_by_vector-  s<    " EE1V F 
 
 32/2222r6   Optional[bool]c                &   |t          d          t          | j        t          j        t          dt          d          t          dt          t                              t          dt          d          t          d	t          d          d
          }	 | j                                        5 }|                                5  |j        j                            |          }|                    |                                                    |                     	 ddd           ddd           dS # 1 swxY w Y   	 ddd           dS # 1 swxY w Y   dS # t(          $ r(}t+          dt-          |                     Y d}~dS d}~ww xY w)zUDelete by vector IDs.

        Args:
            ids: List of ids to delete.
        NzNo ids provided to delete.rD   Tru   rG   rH   rI   rK   rL   zDelete operation failed:F)
ValueErrorr   r$   rO   rK   r   r   r   r   r   r   r9   rR   rS   crD   in_rU   deletewhere	Exceptionprintr    )r3   rh   rk   r}   rW   delete_conditiones          r4   r   zAnalyticDB.deleteC  s    ;9:::  M44000;d,,:v555:td333 
 
 
	$$&&  $ZZ\\    '3~'8'<'<S'A'A$LL!4!4!6!6!<!<=M!N!NOOO                                                                              
  	 	 	,c!ff55555555	sg   E 0EAD8 E+E 8D<	<E?D<	 EE EE EE 
F(FFclsType[AnalyticDB]c	                t    |                      |	          }
 | |
|||||          } |j        d|||d|	 |S )z
        Return VectorStore initialized from texts and embeddings.
        Postgres Connection string is required
        Either pass it as a parameter
        or set the PG_CONNECTION_STRING environment variable.
        )r   r$   r!   r"   r%   r)   )rd   rf   rh   ro   )get_connection_stringr   )r   rd   rG   rf   r"   r$   rh   r%   r)   rk   r   stores               r4   
from_textszAnalyticDB.from_textsa  sh    (  55f==/+( 3"7#
 
 
 	LeycLLVLLLr6   Dict[str, Any]c                L    t          |dd          }|st          d          |S )Nr   PG_CONNECTION_STRING)datar   env_keyzxPostgres connection string is requiredEither pass it as a parameteror set the PG_CONNECTION_STRING environment variable.)r   r   )r   rk   r   s      r4   r   z AnalyticDB.get_connection_string  sJ    !5#*"
 "
 "
 ! 	H   ! r6   	documentsc                    d |D             }	d |D             }
|                      |          }||d<    | j        d|	||||
|||d|S )z
        Return VectorStore initialized from documents and embeddings.
        Postgres Connection string is required
        Either pass it as a parameter
        or set the PG_CONNECTION_STRING environment variable.
        c                    g | ]	}|j         
S ro   )r   rq   ds     r4   rs   z-AnalyticDB.from_documents.<locals>.<listcomp>  s    333A333r6   c                    g | ]	}|j         
S ro   )rK   r   s     r4   rs   z-AnalyticDB.from_documents.<locals>.<listcomp>  s    333AQZ333r6   r   )rd   r%   rG   r"   rf   rh   r$   r)   ro   )r   r   )r   r   rG   r"   r$   rh   r%   r)   rk   rd   rf   r   s               r4   from_documentszAnalyticDB.from_documents  s    & 4333333333	55f==&7"#s~ 

"7 3+#

 

 

 

 
	
r6   driverhostportdatabaseuserpasswordc                *    d| d| d| d| d| d| S )z2Return connection string from database parameters.zpostgresql+z://:@/ro   )r   r   r   r   r   r   r   s          r4    connection_string_from_db_paramsz+AnalyticDB.connection_string_from_db_params  s;     SVRRRRxRR$RRRRRRRr6   )r   r    r!   r   r"   r#   r$   r    r%   r&   r'   r(   r)   r*   r+   r,   r.   )r)   r*   r+   r,   )r+   r   )r+   r?   )r+   r,   )NNrc   )rd   re   rf   rg   rh   ri   rj   r#   rk   r   r+   rl   )r   N)
r   r    r   r#   r   r*   rk   r   r+   r   )r   r    r   r#   r   r*   r+   r   )rG   r   r   r#   r   r*   r+   r   )
rG   r   r   r#   r   r*   rk   r   r+   r   )rh   ri   rk   r   r+   r   )r   r   rd   rl   rG   r   rf   rg   r"   r#   r$   r    rh   ri   r%   r&   r)   r*   rk   r   r+   r   )rk   r   r+   r    )r   r   r   r   rG   r   r"   r#   r$   r    rh   ri   r%   r&   r)   r*   rk   r   r+   r   )r   r    r   r    r   r#   r   r    r   r    r   r    r+   r    )r1   
__module____qualname____doc__ _LANGCHAIN_DEFAULT_EMBEDDING_DIM"_LANGCHAIN_DEFAULT_COLLECTION_NAMEr5   r2   propertyr>   rB   r\   r:   r^   r   r   r   r   r   r   classmethodr   r   r   r   ro   r6   r4   r   r      sS        ( $DA&++/&*( ( ( ( (( '+! ! ! ! !( ' ' ' X'2 2 2 2'2 '2 '2 '2R* * * *
- - - - +/#'> > > > >F !%	
 
 
 
 
6 !%	    2 !%	0% 0% 0% 0% 0%j !%	3 3 3 3 3,    < 
 +/#CA#'&+&*    [B ! ! ! [!  
 $DA#'&+&*"
 "
 "
 "
 ["
H 
S 
S 
S [
S 
S 
Sr6   r   )*
__future__r   r/   rP   typingr   r   r   r   r   r	   r
   r   r   
sqlalchemyr   r   r   r   r   r   r   sqlalchemy.dialects.postgresqlr   r   r   sqlalchemy.ormr   r   sqlalchemy.ext.declarativelangchain_core.documentsr   langchain_core.embeddingsr   langchain_core.utilsr   langchain_core.vectorstoresr   r   r   rO   r   ro   r6   r4   <module>r      s   " " " " " "   W W W W W W W W W W W W W W W W W W W W W W O O O O O O O O O O O O O O O O O O < < < < < < < < < <</////// < < <;;;;;;;;< . - - - - - 0 0 0 0 0 0 5 5 5 5 5 5 3 3 3 3 3 3#'  %9 "jS jS jS jS jS jS jS jS jS jSs   A	 	AA