from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

import requests
from langchain_core._api import deprecated
from langchain_core.embeddings import Embeddings
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env, pre_init
from pydantic import BaseModel, ConfigDict, SecretStr
from tenacity import (
    before_sleep_log,
    retry,
    stop_after_attempt,
    wait_exponential,
)

logger = logging.getLogger(__name__)


def _create_retry_decorator() -> Callable[[Any], Any]:
    """Returns a tenacity retry decorator."""

    multiplier = 1
    min_seconds = 1
    max_seconds = 4
    max_retries = 6

    return retry(
        reraise=True,
        stop=stop_after_attempt(max_retries),
        wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


def embed_with_retry(embeddings: SolarEmbeddings, *args: Any, **kwargs: Any) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = _create_retry_decorator()

    @retry_decorator
    def _embed_with_retry(*args: Any, **kwargs: Any) -> Any:
        return embeddings.embed(*args, **kwargs)

    return _embed_with_retry(*args, **kwargs)


@deprecated(
    since="0.0.34", removal="1.0", alternative_import="langchain_upstage.ChatUpstage"
)
class SolarEmbeddings(BaseModel, Embeddings):
    """Solar's embedding service.

    To use, you should have the environment variable``SOLAR_API_KEY`` set
    with your API token, or pass it as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain_community.embeddings import SolarEmbeddings
            embeddings = SolarEmbeddings()

            query_text = "This is a test query."
            query_result = embeddings.embed_query(query_text)

            document_text = "This is a test document."
            document_result = embeddings.embed_documents([document_text])

    """

    endpoint_url: str = "https://api.upstage.ai/v1/solar/embeddings"
    """Endpoint URL to use."""
    model: str = "solar-1-mini-embedding-query"
    """Embeddings model name to use."""
    solar_api_key: Optional[SecretStr] = None
    """API Key for Solar API."""

    model_config = ConfigDict(
        extra="forbid",
    )

    @pre_init
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate api key exists in environment."""
        solar_api_key = convert_to_secret_str(
            get_from_dict_or_env(values, "solar_api_key", "SOLAR_API_KEY")
        )
        values["solar_api_key"] = solar_api_key
        return values

    def embed(
        self,
        text: str,
    ) -> List[List[float]]:
        payload = {
            "model": self.model,
            "input": text,
        }

        # HTTP headers for authorization
        headers = {
            "Authorization": f"Bearer {self.solar_api_key.get_secret_value()}",  # type: ignore[union-attr]
            "Content-Type": "application/json",
        }

        # send request
        response = requests.post(self.endpoint_url, headers=headers, json=payload)
        parsed_response = response.json()

        # check for errors
        if len(parsed_response["data"]) == 0:
            raise ValueError(
                f"Solar API returned an error: {parsed_response['base_resp']}"
            )

        embedding = parsed_response["data"][0]["embedding"]

        return embedding

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Embed documents using a Solar embedding endpoint.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = [embed_with_retry(self, text=text) for text in texts]
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        """Embed a query using a Solar embedding endpoint.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        embedding = embed_with_retry(self, text=text)
        return embedding
